Synthesis of a $\mathrm{C}_{29}-\mathrm{C}_{51}$ Subunit of Spongistatin 1 (Altohyrtin A) Starting from (R)-3-Benzyloxy-2-methylpropan-1-ol

Sandrine Lemaire-Audoire* and Pierre Vogel
Section de Chimie, Université deLausanne, BCH, CH-1015 Lausanne-Dorigny, Switzerland

Received October 20, 1999

Abstract

A protected $\mathrm{C}_{29}-\mathrm{C}_{51}$ subunit ((+)-38) of spongistatin 1 has been obtained. Key steps involve the aldol condensation of (3S,4R)-3-methyl-7-[(p-methoxybenzyl)oxy]-4-[(triethylsilyl)oxy]octan-2-one ((-)-6) with (tert-butyl)dimethylsilyl 4-deoxy-2,3-di-O-(methoxymethyl)-4-methyl-6-O-(tert-butyl)-dimethylsilyl)- β-D-glycero-L-gluco-heptodialdo-1,5-pyranoside ((+)-7) and a C-glycosidation of (4R,7R\&S,E)-7,8-dichloro-2-methylidene-1-(trimethylsilyl)oct-5-en-4-yl p-methoxybenzoate (16). AIdehyde (+)-7 was derived from (R)-3-benzyloxy-2-methylpropan-1-ol ((+)-10) in 13 formal steps but requiring the isolation of five intermediate products only. The longest linear synthetic scheme converts (+)-10 into (+)-38 in 2% overall yield (isolation of 11 intermediate products).

The spongistatins ${ }^{1,2}$ and altohyrtins ${ }^{3,4}$ are cytotoxic macrolides isolated in minute amounts from marine organisms. They display especially powerful growth inhibitory activity in vitro against multidrug-resistant cancer cells, probably resulting from inhibition of tubulin polymerization. ${ }^{2}$ A first total synthesis of spongistatin 1 (altohyrtin A), which is among the most potent congeners, has been reported by Kishi and co-workers, ${ }^{5}$ a few weeks after the report of the group of Evans ${ }^{6}$ on the total synthesis of spongistatin 2 (altohyrtin C). ${ }^{7}$ Several other groups have already reported on the preparation of various fragments of this extremely important class of natural products. ${ }^{8}$ In a preliminary report we converted (R)-(+)-3-benzyloxy-2-methylpropan-1-ol into a 4-deoxy-4-methyl-D-threo-L-gluco-heptanopyranose derivative and had studied its C -glycosidation, generating the $\mathrm{C}_{37}-\mathrm{C}_{45}$ F-ring fragment of the spongistatins. ${ }^{9}$ We show now that similar chemistry can be used to prepare a protected form of the $\mathrm{C}_{29}-\mathrm{C}_{51}$ subunit of spongistatin $1,3,4,5$, and 9

[^0](50-chloro-substituted congeners) ${ }^{4}$ in which both rings E and F are formed.

Retrosynthetic Plan. Our retrosynthetic analysis for the construction of spongistatin 1 (and other 50 -chloro congeners) resembles that adopted by several groups. 4, 4, 8, b, ce It implies the joining of a suitably protected $\mathrm{C}_{29}-\mathrm{C}_{51}$ subunit A with a $\mathrm{C}_{1}-\mathrm{C}_{28}$ fragment \mathbf{B} via a Wittig olefination (Scheme 1), followed by a regioselective macrocydization involving the diol at C-41, C-42.5b The subunit A will result from a β-C-glucosidation (stereocontrol by steric hindrance due to the protected al coholic moiety at C-42) combining the synthetic intermediates $\mathbf{1}$ and $\mathbf{2}$ or analogues. Compound $\mathbf{1}$ is expected to be formed with high stereoselectivity through asymmetric allylation with $\mathbf{4}^{10}$ using an enantiomerically pure Lewis acid as promoter. ${ }^{11}$ The long-chain pyranoside $\mathbf{2}$ must bear orthogonal protective groups P at $\mathrm{C}-35, \mathrm{C}-38, \mathrm{P}^{\prime}$ at $\mathrm{C}-41, \mathrm{C}-42$, and $\mathrm{P}^{\prime \prime}$ at C-29. Indeed, the terminal C-29 center of A should be deprotected selectively to allow its conversion into a phosphonium iodide while maintaining all other alcoholic moieties protected from the Wittig ol efination. Furthermore, once \mathbf{A} is combined with \mathbf{B}, the diol at C-41, C-42 should be selectively liberated for the macrocyclization.

Scheme 1

We thus opted for a p-methoxybenzyl ether at C-29, methoxymethyl ethers at C-41, C-42, and silyl ethers at C-35, C-37, C-38, C-47. Synthetic intermediate $\mathbf{2}$ should result from a cross-aldolization between methyl ketone $(-)-6$ and aldehyde (+)-7, giving aldols 3 that must be converted through appropriate protection, diastereoselective ketone reduction, and oxidation to a 37-keto
(8) (a) Claffey, M. M.; Heathcock, C. H. J. Org. Chem. 1996, 61, 7646-7647. Hayes, C. J.; Heathcock, C. H. J . Org. Chem. 1997, 62, 2678-2679. (b) Paterson, I.; Oballa, R. M.; Norcross, R. D. Tetrahedron Lett. 1996, 37, 8581-8584. Paterson, I.; Keown, L. E. Tetrahedron Lett. 1997, 38, 5727-5730. Paterson, I.; Oballa, R. M. Tetrahedron Lett. 1997, 38, 8241-8244. Paterson, L.; Wallace, D. J.; Gibson, K. R. Tetrahedron Lett. 1997, 38, 8911-8914. Paterson, I.; Wallace, D. J.; Oballa, R. M. Tetrahedron Lett. 1998, 39, 8545-8548. Paquette, L. A.; Zuev, D. Tetrahedron Lett. 1997, 38, 5115-5118. Paquette, L. A.; Braun, A. Tetrahedron Lett. 1997, 38, 5119-5122. (c) Smith, A. B.; Zhuang, L.; Brook, C. S.; Boldi, A. M.; McBriar, M. D.; Moser, W. H.; Murase, N.; Nakayama, K.; Verhoest, P. R.; Lin, Q. Tetrahedron Lett. 1997, 38, 8667-8670. Smith, A. B.; Zhuang, L.; Brook, C. S.; Lin, Q.; Moser, W. H.; Lee Trout, R. E.; Boldi, A. M. Tetrahedron Lett. 1997, 38, 8671-8674. Smith, A. B.; Lin, Q.; Nakayama, K.; Boldi, A. M.; Brook, C. S.; McBriar, M. D.; M oser, W. H.; Sobukawa, M.; Zhuang, L. Tetrahedron Lett. 1997, 38, 8675-8678. (d) Hermitage, S. A.; Roberts, S. M.; Watson, D. J. Tetrahedron Lett. 1998, 39, 3567-3570. Evans, D. A.; Trotter, B. W.; Côté, B. Tetrahedron Lett. 1998, 39, 17091712. Terauchi, T.; Nakata, M. Tetrahedron Lett. 1998, 39, 3795-3798. Boyes, A. I.; Wild, M. Tetrahedron Lett. 1998, 39, 6725-6728. Crimmins, M. T.; Washburn, D. G. Tetrahedron Lett. 1998, 39, 7487-7490. Micalizio, G. C.; Roush, W. R. Tetrahedron Lett. 1999, 40, 3351-3354. Smith, A. B.; Lin, Q.; Pettit, G. R.; Chapuis, J. C.; Schmidt, J. M. Bioorg. Med. Chem. Lett. 1998, 8, 567-568. Dunkel, R.; Mentzel, M.; H offmann, H. R. M. Tetrahedron 1997, 53, 14929-14936. Dunkel, R.; H offmann, H. R. M. Tetrahedron 1999, 55, 8385-8396. Dunkel, R.; Treu, J .; Hoffmann, H. R. M. Tetrahedron: Asymmetry 1999, 10, 15391549. Kary, P. D.; Roberts, S. M.; Watson, D. J. Tetrahedron: Asymmetry 1999, 10, 213-216. Kary, P. D.; Roberts, S. M. Tetrahedron: Asymmetry 1999, 10, 217-219. (e) Fernandez-M egia, E.; Gourlaouen, N.; Ley, S. V.; Rowlands, G. J. Synlett 1998, 991-994.
(9) Lemaire-Audoire, S.; Vogel, P. Tetrahedron Lett. 1998, 39, 13451348.
(10) Clive, D. L. J .; Paul, C. C.; Wang, Z. J . Org. Chem. 1997, 62, 7028-7032.
derivative, precursor of 2. Methyl ketone (-)-6 will be prepared applying methods established by Evans and his group ${ }^{12}$ via the syn α-methyl- β-hydroxyimide (+)-8. AIdehyde (+)-7 will result from a diastereoselective dihydroxylation of the enediester 9 , followed by lactonization, reduction, and protection. Compound 9 will be derived from (+)-10 following a procedure developed by us and presented earlier. ${ }^{9}$

Preparation of the $\mathrm{C}_{44}-\mathrm{C}_{51}$-Allylating Agent. Chlorination of methyl (E)-penta-2,4-dienoate (11) ${ }^{13}$ in chloroform at $0{ }^{\circ} \mathrm{C}$ produced methyl (E)-4,5-dichloropent-2enoate (12) in 76\% yield. Reduction of $\mathbf{1 2}$ with (i-Bu) ${ }_{2} \mathrm{AlH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the corresponding allylic al cohol $\mathbf{1 3}$ (80\% yield), which was directly oxidized by Dess-Martin periodinane ${ }^{14}$ to give enal $\mathbf{1 4}$ (81\% yield). In the presence of 0.1 equiv of the enantiomerically pure titanium alcohol ate derived from the mixing of (S)-BINOL (0.2 equiv) and $\mathrm{Ti}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{4}$ (0.1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, enal 14 added to \{2-[(trimethylsilyl)methyl]prop-2-enyl\}triphenylstannane (4), ${ }^{10}$ giving alcohol 15 (60% yield). This relatively unstable compound was esterified without purification with p-MeO- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOCl}$ in dry pyridine in the presence

[^1]Scheme 2

Scheme 3

(+)-21

$(+)-8$

1. $\mathrm{AlMe}_{3}, 0^{\circ} \mathrm{C}$, MeONHMe. HCl , THF
2. TESCI, imidazole, DMF, $0-25^{\circ} \mathrm{C}$ (73\%)

$(+)-22$
$\xrightarrow{\mathrm{MeMgCl}, \mathrm{THF}}$
$0^{\circ} \mathrm{C}(90 \%)$

$(-)-6$
of 4-(dimethylamino)pyridine (DMAP), affording ester (+)-16 in 75% yield (based on 14, 1:1 mixture of C(50) diastereomers that could not be separated). Treatment of $(+)-16$ with DBU in THF ($50^{\circ} \mathrm{C}, 45 \mathrm{~min}$) provided triene (+)-17 in 80\% yield (Scheme 2).

The enantiomeric excess of $(+)$ - $\mathbf{1 7}$ was established as follows. Esterification of alcohol $\mathbf{1 5}$ with (S)-(-)- α-meth-oxy- α-(trifluoromethyl)- α-phenylacetyl chloride, ${ }^{15}$ followed by treatment with DBU/THF ($50^{\circ} \mathrm{C}$), afforded the Mosher's ester 17M, the ${ }^{19}$ F NMR spectrum of which established an ee $=90 \%$ ($\delta_{\mathrm{F}}-71.75 \mathrm{ppm}$ (major), -71.96 ppm (minor)). The (47S) configuration of $\mathbf{1 5 - 1 7}$ was deduced from its mode of formation and the analogy with several related asymmetric allylations of aldehydes promoted by the Lewis acid used here. ${ }^{16}$ It has been confirmed in the following way. Ozonolysis of $15\left(\mathrm{O}_{3}\right.$, $\mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$) gave a keto-aldehyde that was oxidized ($\mathrm{H}_{2} \mathrm{CrO}_{4} /$ acetone) into the corresponding ketocarboxylic acid. Baeyer-Villiger oxidation of the latter with metachloroperbenzoic acid gave a diacid that was extracted with aqueous NaHCO_{3}. Acidification liberated L-(-)-malic acid ((S)-malic acid), $[\alpha]^{25}{ }_{D}=-25.3$ ($c=0.8$, pyridine), lit. ${ }^{17}[\alpha]^{20}{ }_{D}=-28.7$ ($c=5.5$, pyridine) thus proving the (47S) configuration of 15.

[^2]
Scheme 4

Preparation of the $\mathrm{C}_{29}-\mathrm{C}_{36}$ Methyl Ketone. Treatment of pentane-1,5-diol (18) with 0.8 equiv of $\mathrm{NaH}, 0.9$ equiv of paramethoxybenzyl chloride, and $\mathrm{Bu}_{4} \mathrm{NI}$ (catalyst) provided the semiprotected diol 19 in 58\% yield. Oxidation of 19 with pyridinium chlorochromate ${ }^{18}$ gave aldehyde 20 (82% yield), which was reacted with the boron enolate derived from carboximide (+)-21 and Bu_{2} BOTf. ${ }^{19}$ The syn- α-methylaldol (+)-8 was obtained in 68% yield, as a single diastereomer (Scheme 3). Formation of a Weinreb amide, ${ }^{20 b}$ followed by silylation of the secondary alcohol and reaction with methylmagnesium chloride, allowed efficient formation of methyl ketone (-)6. The syn relative configuration has been confirmed by the ${ }^{1} \mathrm{H}$ NMR data of (-)-6A (see below). The absolute configuration of alcohol (+)-8 was deduced from its mode of formation and in analogy with a large number of related cross-aldolizations using (+)-21. ${ }^{12,20}$ We confirmed the absolute configuration of (-)-6 by the ${ }^{1} \mathrm{H}$ NMR spectra of Mosher's esters (+)-6M(R) and (-)-6M(S) obtained as shown in Scheme 4 via esterification with (R)-(-)- α-methoxy- α-(trifluoromethyl)- α-phenylacetyl chloride and the (S)-enantiomer, respectively. ${ }^{21}$

The syn relative configuration of $(-)-6$ was confirmed by its conversion into acetonide (-)-6A, the ${ }^{13} \mathrm{C}$ NMR

[^3]$(+)-10$

$\mathrm{MeCN}, 20^{\circ} \mathrm{C}$ (80\%)
$(+)-23$

1. AD-mix β

$(+)-26 R=M O M$

(-)-27

$\mathrm{MeCN}, 20^{\circ} \mathrm{C}$ (71\%)

$(-)-28$

(96\%)

$(-)-29$
2. DIBAL-H $\xrightarrow[\substack{\text { 2. TBSOTf, } \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ \text { 2,6-lutidine }}]{\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}}$ (64\%)

$(+)-30$

$(+)-7$
$(+)-26+27 \longrightarrow(+)-30+$

$(-)-31$

Scheme 5

$\mathrm{TBS}=(t-\mathrm{Bu}) \mathrm{Me}_{2} \mathrm{Si}, \mathrm{E}=\mathrm{COOEt}$
spectrum of which showed $\delta_{\mathrm{C}}=30.1,19.7 \mathrm{ppm}$ for the methyl groups of the acetonide (chair conformation). Its ${ }^{1} \mathrm{H}$ NMR spectrum showed typical coupling constants ${ }^{3} \mathrm{~J}(\mathrm{H}-4, \mathrm{H}-5)=2.3 \mathrm{~Hz}$ and $^{3} \mathrm{~J}(\mathrm{H}-5, \mathrm{H}-6)=2.2 \mathrm{~Hz}$ for vicinal equatorial/axial proton pairs. Furthermore, the 2D NOESY ${ }^{1}$ H NMR spectrum of (-)-6A displayed cross-peaks for the signal pair at $\delta_{\mathrm{H}} 4.12(\mathrm{H}-4)$ and $1.43 \mathrm{ppm}(\mathrm{Me}-$ $\mathrm{C}(2))$, on one hand, and for the signal pair at $\delta_{\mathrm{H}} 3.85(\mathrm{H}-$ 6) and 1.43 ppm , on the other hand. Product (-)-6A was obtained in 64% overall yield by desilylation of $(-)-6$ (HF - pyridine, THF , $0^{\circ} \mathrm{C}$), followed by syn selective aldol reduction ($\left.\mathrm{Et}_{2} \mathrm{BOMe}, \mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{MeOH}\right)^{22}$ and acetalization with acetone and 2,2-dimethoxypropane in the presence of p-toluenesulfonic acid as catalyst.

Preparation of the $\mathbf{C}_{37}-\mathbf{C}_{43}$ Aldehyde. The starting (R)-(+)-3-benzyloxy-2-methylpropan-1-ol ((+)-10) was prepared by enzymatic resolution, as reported by Santaniello ${ }^{23}$ with 90% ee. Alternatively, (+)-10 (with ee $>98 \%$) was derived from the commercially available (+)methyl L- β-hydroxyisobutyrate (ee >98\%) by benzylation, ${ }^{24}$ followed by reduction of the methyl ester with $\mathrm{LiAlH}_{4}{ }^{25}$ After quantitative oxidation of the primary alcohol under Swern's condition, ${ }^{26}$ a Wadworth-HornerEmmons reaction with triethylphosphonoacetate ${ }^{27}$ provided the α, β-unsaturated ester (+)-23 in 80% yield. Treatment of $(+)-23$ with enriched AD-mix- $\beta^{28}(\mathrm{t}-\mathrm{BuOH} /$ $\mathrm{H}_{2} \mathrm{O}$ 1:1, $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}, 12 \mathrm{~h}, 20^{\circ} \mathrm{C}$) led to a $4: 1$ mixture of diols 24 and 25 that could not be separated. Protected as bis(methoxymethyl)diethers 26 and 27, the diastereoisomers were separated by flash chromatography (Scheme 5). ${ }^{29}$ Hydrogenolysis of pure (+)-26 ($\left.\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}\right)$, followed by Swern oxidation and Wadworth-Horner-

[^4]Emmons reaction with triethylphosphonoacetate, ${ }^{27}$ gave pure diester (-)-28 in 71\% yi eld based on (+)-26 (after flash chromatography on silica gel). Contrary to the dihydroxylation of (+)-23 with N -methylmorpholine, catalyzed with OsO_{4}, which was not face selective, (-)28 was oxidized under these conditions, ${ }^{30}$ giving a major diol, the treatment of which with concentrated HCl in tetrahydrofuran provided Iactone (-)-29 isolated as a single stereoisomer in 96% yield and with ee > 99\% (${ }^{19} \mathrm{~F}$ NMR of the corresponding Mosher's ester).

Chemosel ective reduction of the lactone moiety of (-)29 was possible on exposure to 3 equiv of DIBAL-H in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ for 10 min and quenching with MeOH . The resulting crude lactol was directly silylated with (t$\mathrm{Bu}) \mathrm{Me}_{2} \mathrm{SiOSO}_{2} \mathrm{CF}_{3} / 2,6$-lutidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~h}, \mathrm{O}^{\circ} \mathrm{C}\right.$), giving the uronic derivative (+)-30 in 64\% yield (2 steps). The ${ }^{1} \mathrm{H}$ NMR spectrum of $(+)$ - 30 showed coupling constants for the vicinal proton pairs of the pyranoside ${ }^{3} \mathrm{~J}(43,42)=7.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}(42,41)=9.2 \mathrm{~Hz}$, ${ }^{3} \mathrm{~J}(41,40)=10.3$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}(40,39)=10.4 \mathrm{~Hz}\right)$ typical for axial/axial proton pairs, thus proving the β-L-gluco configuration of the pyranoside. This assignment was confirmed by the 2D NOESY ${ }^{1} \mathrm{H}$ NMR spectrum of (+)-30 that showed crosspeaks for signals at $\delta_{\mathrm{H}} 4.47(\mathrm{H}-43), 3.23(\mathrm{H}-41)$, and 3.51 ppm (H-39). The relative configuration (D-glycero) of C-38 of $(+)-30$ was deduced from that of $\mathrm{C}-39$ (cis double hydroxylation of the (E)-enoate (-)-28) (Scheme 5).

When the 4:1 mixture of (+)-26 and (-)-27 was used instead of pure (+)-26, a 4:1 mixture of ethyl uronates $(+)-30$ and $(-)-31$ was obtained and could be readily separated by flash chromatography on silica gel. The β-Laltro configuration of the pyranoside moiety of $(-)-31$ was confirmed by its ${ }^{1} \mathrm{H}$ NMR spectrum (${ }^{3} \mathrm{~J}(43,42)=1.0 \mathrm{~Hz}$, ${ }^{3} \mathrm{~J}(42,41)=3.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}(41,40)=3.3 \mathrm{~Hz}$, ${ }^{3} \mathrm{~J}(40,39)=10.7$ Hz).

[^5]
Scheme 6

$(-)-6$

1. (t) 7 2 $-78^{\circ} \mathrm{C},-78^{\circ} \mathrm{C}$

$$
\frac{\text { 2. }(+)-7,-78^{\circ} \mathrm{C}}{\text { 3. } \mathrm{Ac}_{2} \mathrm{O}, \text { pyr. DMAP }, 0^{\circ} \mathrm{C}}
$$

(75\%)

$(+)-32$

1. HF.pyr, THF, $0^{\circ} \mathrm{C}$
$\xrightarrow[\text { THF, MeOH, }-78{ }^{\circ} \mathrm{C}]{\text { 2. } \mathrm{Et}_{2} \mathrm{BOMe}, \mathrm{NaBH}_{4}}$
2. $\mathrm{Et}_{3} \mathrm{SiOTf}, 2,6$-lutidine
$-30^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \%)$

$(+)-33 R=T E S$ $34 \mathrm{R}, \mathrm{R}=\mathrm{Me}_{2} \mathrm{C}$
$(+)-35$

Reduction of uronic ester (+)-30 with DIBAL-H in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(-78^{\circ} \mathrm{C}, 30 \mathrm{~min}\right.$, quenching with MeOH$)$ afforded the corresponding primary al cohol, which was not purified but directly oxidized into aldehyde (+)-7 with DessMartin periodinane. ${ }^{14}$ The overall yield for the conversion of $(+)-10$ into $(+)-7$ was 27% (13 formal steps, isolation of five intermediate products only!).

Coupling of the Various Fragments into a $\mathbf{C}_{29}-$ C_{51} Subunit. The lithium enolate of methyl ketone (-)-6 obtained on treatment with (i-Pr) $2_{2} \mathrm{NLi}$ in THF at $-78^{\circ} \mathrm{C}$ reacted with aldehyde $(+)-7\left(-78{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}\right)$ to yield a major aldol product that was not isolated but acetylated with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{pyridine/DMAP}\left(0^{\circ} \mathrm{C}, 40 \mathrm{~min}\right)$ to give the corresponding acetate (+)-32 with a di astereomeric ratio $>95: 5$ and 75% yield. The relative configuration of the acetate was not established, as it will be transformed later into a ketone (Scheme 6). Selective desilylation of the triethylsilyl ether of $(+)-32$ with HF - pyridine in THF $\left(0^{\circ} \mathrm{C}\right)$ followed by syn-selective reduction of the intermediate β-hydroxyketone under Narasaka conditions $\left(\mathrm{Et}_{2} \mathrm{BOMe}, \mathrm{NaBH}_{4}\right)^{22}$ gave a diol that was protected by silylation with $\mathrm{Et}_{3} \mathrm{SiOTf} / 2,6$-lutidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30^{\circ} \mathrm{C}$, furnishing (+)-33. The syn relative configuration at C-9 and C-11 of (+)-33 was confirmed in the following way. Protection of the intermediate 1,3-diol arising from the Narasaka reduction as an acetonide ($\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, acetone, TsOH) gave 34, the ${ }^{13} \mathrm{C}$ NMR spectrum of which displayed two different signals at $\delta_{\mathrm{C}} 19.4$ and 29.6 ppm typical for the syn relative configuration. ${ }^{31}$ All our attempts to hydrolyze $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}\right.$; $\mathrm{NaOMe}, \mathrm{MeOH}$; $\left.\mathrm{NH}_{3}, \mathrm{MeOH}\right)$ the acetate moiety of (+)-33 failed to give the expected alcohol. Finally the acetate was reduced with $(\mathrm{i}-\mathrm{Bu})_{2} \mathrm{AlH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$, and the intermediate al cohol was oxidized with Dess-Martin periodinane, ${ }^{14}$ providing the desired ketone (+)-35 (80\%). Chemoselective desilylation (TES vs TBS) of (+)-35 with HF pyridine, followed by Fischer glycosidation in methanol
(31) Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Acc. Chem. Res. 1998, 31, 9-17, and references cited therein.
(TsOH as catalyst, $20^{\circ} \mathrm{C}$) ${ }^{32}$ gave methyl α-pyranuloside (+)-36 in 77\% yield, the structure of which was confirmed by its 2D NOESY ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$. In particular, the relative configuration of C-37, C-35, and C-34 was confirmed by the observation of cross-peaks for signals at $\delta_{\mathrm{H}} 3.38$ ($\mathrm{MeO}-\mathrm{C}(37)$) and $5.39 \mathrm{ppm}(\mathrm{HO}-\mathrm{C}(35)$, $3 \mathrm{~J}(\mathrm{OH}, \mathrm{H}-35)=5.1 \mathrm{~Hz}$, vanishes on adding $\left.\mathrm{D}_{2} \mathrm{O}\right)$, on one hand, and for signals at $\delta_{\mathrm{H}}=0.78(\mathrm{Me}-\mathrm{C}(34))$ and 4.15 ppm (H-35), on the other hand.

Selective desilylation of the β-L-glucopyranoside without cleavage of the silyl ether at C-6 was possible by treating (+)-36 with 1.1 equiv of $\mathrm{Bu}_{4} \mathrm{NF}$ in THF at -30 ${ }^{\circ} \mathrm{C}$. The resulting pyranose was directly acetylated with $\mathrm{Ac}_{2} \mathrm{O} /$ pyridine and DMAP (catalyst) at $0{ }^{\circ} \mathrm{C}$ to produce diacetate 37 (75\%), an unstable compound that was directly used in the C-glycosidation of silane 16. The latter reaction ${ }^{33}$ was run in nitromethane, a solvent known to favor β-allylation, ${ }^{34}$ requiring an excess of 16 and of the Lewis acid promoter $\mathrm{Me}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$. A mixture of compounds was obtained that was not purified but heated in THF $\left(50^{\circ} \mathrm{C}\right)$ in the presence of 3 equiv of DBU to induce the HCl elimination, providing a $4: 1$ mixture (42\%) of β-C-glycoside (+)-38 and its α-anomer. ${ }^{35}$ Pure (+)-38 was obtained after a second column chromatography on silica gel, in 30% yield. The β-L-glucopyranoside configuration of fragment C-9-C-13 of (+)38 was confirmed by its ${ }^{1} \mathrm{H}$ NMR data (${ }^{3} \mathrm{~J}(\mathrm{H}-43, \mathrm{H}-42)=$
(32) Ziegler, F. E.; Cain, W. T. J . Org. Chem. 1989, 54, 3347-3353.
(33) Hosomi, A.; Sakata, Y.; Sakurai, H. Tetrahedron Lett. 1984, 25, 2383-2386. Hosomi, A.; Sakata, Y.; Sakurai, H. Carbohydr. Res. 1987, 171, 223-232. Passek, J. S.; Sparks, M. A. J . Org. Chem. 1989, 54, 2034-2038. Luengo, J. I.; Gleason, J. G. Tetrahedron Lett. 1992, 33, 6911-6914. Hung, S.-C.; Lin, C.-C.; Wong, C.-H. Tetrahedron Lett. 1997, 38, 5419-5422. Fuchs, T.; Schmidt, R. R. Synthesis 1998, 753758. Bombard, S.; Maillet, M.; Capman, M.-L. Carbohydr. Res. 1995, 275, 433-440. Bertozzi, C.; Bednarski, M. Carbohydr. Res. 1992, 223, 243-253.
(34) BeMiller, J. N.; Yadav, M. P.; Kalabokis, V. N.; Myers, R. W. Carbohydr. Res. 1990, 200, 111-126. Compare with: Giannis, A.; Sandhoff, K. Tetrahedron Lett. 1985, 26, 1479-1482. Hoffmann, M. G.; Schmidt, R. R. Liebigs Ann. Chem. 1985, 2403-2419.
(35) Under similar conditions, the C-glycosidation of triene (+)-17 failed and led to decomposition only.
$10.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}-42, \mathrm{H}-41)=9.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}-41, \mathrm{H}-40)=9.0 \mathrm{~Hz}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}-40, \mathrm{H}-39)=11.1 \mathrm{~Hz}\right)$.

Conclusion

A convergent approach to the synthesis of a protected form of the $\mathrm{C}_{29}-\mathrm{C}_{51}$ fragment of spongistatin 1 (altohyrtin A) has been presented. The allylsilane $16\left(C_{44}-C_{51}\right.$ fragment) used in the C-glycosidation of the F-ring 4-deoxy-4-methyl-L-glucopyranoside moiety was derived from methyl (E)-penta-2,4-dienoate in four steps and 37\% overall yield. The methyl ketone (-)-6 ($\mathrm{C}_{29}-\mathrm{C}_{36}$ fragment) was derived from pentane-1,5-diol in five steps and 21\% overall yield. Aldehyde (+)-7 ($\mathrm{C}_{37}-\mathrm{C}_{43}$ fragment) was derived from (R)-(+)-3-benzyloxy-2-methylpropan-1-ol ((+)-10) in 12 steps and 27% overall yield. In fact the method required the isolation of only five intermediate products during the conversion of (+)-10 into (+)-7. Thus $(+)-10$ was converted into $(+)-38$ in 20 steps and 2% overall yield, the longest linear synthetic scheme requiring the isolation of only 11 intermediate products. Our approach can be compared with that of Kishi and co-workers ${ }^{5}$ in which their $\mathrm{C}_{29}-\mathrm{C}_{51}$ fragment was derived from 2-[tris(isopropyl)silyloxy]ethanol in 26 steps and 0.8% overall yield. Compound (+)-38 bears six different al cohol ic protective groups that have been chosen in such a way that $(+)-38$ should be useful in its condensation with suitable $\mathrm{C}_{1}-\mathrm{C}_{28}$ fragments to generate spongistatin 1 and derivatives.

Experimental Section

General Remarks. See ref 36. ${ }^{1} \mathrm{H}$ NMR spectrum signal assignments were confirmed by 2D COSY and 2D NOESY ${ }^{1} \mathrm{H}$ NMR spectra.

Methyl (E)-4,5-Dichloropent-2-enoate (12). Cl_{2} was bubbled through a solution of methyl (E)-penta-2,4-dienoate (11, Fluka, $5 \mathrm{~mL}, 43 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$ stirred at $0^{\circ} \mathrm{C}$ for 30 min . Excess Cl_{2} was removed by bubbling Ar for 5 min . After solvent evaporation the residue was distilled under vacuum (Vigreux column) to give a pale yellow oil ($6.0 \mathrm{~g}, 76 \%$). Bp: $74^{\circ} \mathrm{C}$ (0.07 Torr). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 6.91$ (dd, 1H), 6.16 (dd, 1H), 4.65-4.59 (m, 1H), 3.86 (dd, 1H), 3.79 (s, $3 \mathrm{H}), 3.71$ (dd, 1H). ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.6$, 142.2, 125.0, 57.6, 52.0, 46.5. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Cl}_{2}$ (183.03): C, 39.34; H, 4.37; CI, 38.80. Found: C, 39.48; H, 4.52; CI, 38.62.
(E)-4,5-Dichloropent-2-enol (13). One molar (i-Bu) 2 AH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(41 \mathrm{~mL}, 0.41 \mathrm{mmol})$ was added over 30 min to a stirred solution of $12(2.5 \mathrm{~g}, 0.135 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70$ mL) cooled to $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , the cooling bath was removed and the mixture stirred for 1 h . Methanol (10 mL) was added under vigorous stirring and the mixture poured into 1 M aqueous $\mathrm{HCl}(120 \mathrm{~mL})$. The aqueous layer was extracted with CHCl_{3}. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. The residual oil was purified by flash chromatography on silica gel (1:3 EtOAcllight petroleum ether), affording a col orless oil (1.7 $\mathrm{g}, 80 \%), \mathrm{R}_{\mathrm{f}}(1: 4 \mathrm{EtOAc} /$ light petroleum ether $)=0.24$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.03$ (dtd, J $\left.=15.3,4.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.82$ (ddt, J = 15.3, 8.4, 1.7 Hz, 1H), $4.55(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 2 \mathrm{H})$, 3.81 (dd, J = 11.9, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (dd, J $=11.9,8.0 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.9,127.6,62.2,59.9$, 47.6. Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{OCl}_{2}$ (155.02): C, 38.70; H, $5.16 ; \mathrm{Cl}$, 45.16. Found: C, 38.85; H, 5.15; CI, 44.98 .
(E)-4,5-Dichloropent-2-enal (14). A mixture of 13 (1.35 $\mathrm{g}, 8.7 \mathrm{mmol}$), anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and Dess-Martin periodinane (1,1,1-triacetoxy-1,1-di hydro-1,2-benziodoxol-3(1H)-

[^6]one, $7.4 \mathrm{~g}, 17.4 \mathrm{mmol}$) was stirred at $20^{\circ} \mathrm{C}$ for 1.5 h . Diethyl ether (40 mL), a saturated aqueous solution of $\mathrm{NaHCO}_{3}(40$ mL), and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(28 \mathrm{~g})$ were added. After vigorous shaking for 5 min , the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined etheral extracts were washed with a saturated aqueous solution of NaHCO_{3}, then with brine, and dried (MgSO_{4}). Solvent evaporation in vacuo afforded a pale yellow oil ($1.08 \mathrm{~g}, 81 \%$) that was not purified further. $\mathrm{R}_{\mathrm{f}}(1: 4 \mathrm{EtOAc}$ light petroleum ether) $=0.46 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $9.64(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (dd, J $=15.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ (ddd, J = 15.5, 7.4, 1.1 Hz, 1H), 4.73 (m, 1H), 3.90 (dd, J = $11.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, \mathrm{J}=11.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 192.0, 149.4, 134.6, 57.2, 46.2.

1:1 Mixture of (4S,7R,E) and (4S,7S,E)-7,8-Dichloro-2-methylidene-1-(trimethlysilyl)oct-5-en-4-yl p-Methoxybenzoate (16). A 1 M solution of freshly distilled $\mathrm{Ti}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{4}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(196 \mu \mathrm{~L}, 0.196 \mathrm{mmol})$ was added to a stirred solution of (S)-BINOL ((S)-(-)-2,2'-dihydroxy-1,1'-dinaphthyl, Fluka, $112 \mathrm{mg}, 0.392 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7.5 mL) at $25^{\circ} \mathrm{C}$ for 45 min . The dark red sol ution was cooled to $0^{\circ} \mathrm{C}$ under an Ar atmosphere, and $\mathbf{1 4}(0.3 \mathrm{~g}, 1.96 \mathrm{mmol})$ in solution in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added, followed by the addition of \{2-[(trimethylsilyl)methyl]prop-2-enyl\}triphenylstannane ${ }^{10}$ (4) ($1.22 \mathrm{~g}, 2.55 \mathrm{mmol}$). After stirring at 0 ${ }^{\circ} \mathrm{C}$ for 3 h , EtOAc (10 mL) and a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ were added under vigorous stirring. After stirring for 1 h at $20^{\circ} \mathrm{C}$, the layers were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL , twice). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (1:8 EtOAc/light petroleum ether), affording a pale yellow oil ($330 \mathrm{mg}, 60 \%$). Because of its instability, this oil could not be purified further and was dissolved in anhydrous pyridine (11 mL), and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. p-Methoxybenzoyl chloride $(0.49 \mathrm{~mL}, 0.638$ mmol) and 4 -(dimethylamino)pyridine (15 mg) were added. After stirring at $0{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{EtOAc}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ were added, and the mixture was shaken vigorously at $20^{\circ} \mathrm{C}$ for 1 h . The layers were separated, and the aqueous phase was extracted with EtOAc. The combined organic extracts were washed first with 1 N aqueous HCl , then with saturated aqueous solution of NaHCO_{3}, and finally with brine. After drying $\left(\mathrm{MgSO}_{4}\right)$, sol vent evaporation, and flash chromatography on silica gel ($1: 10 \mathrm{EtOAc} / \mathrm{light}$ petroleum ether), 16 was obtained as a colorless oil ($363 \mathrm{mg}, 75 \%$). R_{f} (1:10 EtOAc/light petroleum ether $)=0.44 .[\alpha]^{25} \mathrm{D}=11\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03,6.95(2 \mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}$), 5.99 (dd, $\mathrm{J}=15.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dm}, \mathrm{J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~m}$, 1H), 4.72, 4.65 (2 br s, 2H), 4.56-4.50 (m, 1H), 3.89 (s, 3H), 3.78, 3.67 ($2 \mathrm{~m}, 2 \mathrm{H}$), 2.51 (dd, J = 14.1, $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (dd, $\mathrm{J}=14.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.3,163.4,142.1,134.1,131.7,128.5$, 122.6, 113.6, 111.1, 71.43, 59.9, 55.5, 47.6, 43.3, 16.7, -1.4 . Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiCl}_{2}$ (415.43): C, 57.82; H, 6.79. Found: C, 57.80; H, 6.68.
(4S)-7-Chloro-2-methylidene-1-(trimethylsilyl)octa-5,7-dien-4-yl p-Methoxybenzoate ((+)-17). A mixture of (+) 16 ($30 \mathrm{mg}, 0.072 \mathrm{mmol}$), anhydrous THF (1.5 mL), and DBU (1,8-diazabicyclo[5.4.0]undec-7-ene, Fluka, $33 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$) was warmed to $50^{\circ} \mathrm{C}$ for 45 min . The solution was poured into $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}, 3$ times). The combined ethereal extracts were washed successively with 1 N aqueous HCl , a saturated aqueous solution of NaHCO_{3}, and brine. After drying $\left(\mathrm{MgSO}_{4}\right)$ and sol vent evaporation in vacuo, the residue was purified by flash chromatography on silica gel ($1: 15 \mathrm{EtOA}$ cllight petroleum ether), affording a colorless oil ($22 \mathrm{mg}, 80 \%$). $\mathrm{R}_{\mathrm{f}}(1: 10$ EtOAc/light petroleum ether) $=0.53$. $[\alpha]^{25}{ }_{D}=62\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ 8.23, $6.68(2 d, \mathrm{~J}=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.47(\mathrm{dd}, \mathrm{J}=15.0,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~m}, 1 \mathrm{H}), 5.16,4.91(2 \mathrm{~d}, \mathrm{~J}$ $=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.87,4.72(2 \mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{dd}, \mathrm{J}$ $=14.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, \mathrm{J}=14.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63,1.59$ (2d, J $=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 165.1,163.4,142.4,137.9,133.3,131.8,128.8,123.1$, $116.4,113.7,111.0,71.7,54.5,43.6,26.5,-1.7$.

5-[(p-Methoxybenzyl)oxy]pentan-1-ol (19). A mixture of pentane-1,5-diol (2.56 g , 24.6 mmol , Fluka), anhydrous THF $(75 \mathrm{~mL})$, and $55 \% \mathrm{NaH}$ in oil ($858 \mathrm{mg}, 19.6 \mathrm{mmol}$) was stirred at $0^{\circ} \mathrm{C}$ for 10 min under an Ar atmosphere. p-M ethoxybenzyl chloride ($3 \mathrm{~mL}, 22 \mathrm{mmol}$) and Bu4NI (0.2 g) were added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then at $20^{\circ} \mathrm{C}$ for 2 h , and was left overnight at $45^{\circ} \mathrm{C}$. The mixture was poured into a vigorously stirred saturated aqueous solution of NaHCO_{3} (250 mL). The aqueous layer was extracted with EtOAc. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel ($1: 1$ EtOAc/light petroleum ether), affording a pale yellow oil ($3.18 \mathrm{~g}, 58 \%$). $\mathrm{R}_{\mathrm{f}}(1: 4 \mathrm{EtOAc} /$ light petroleum ether) $=0.15 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.26 (d, J $=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~s}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}$ 2 H), 1.66-1.55, 1.48-1.46 (2m, 6H), 1.54 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta 159.1,130.6,129.2,113.7,72.5,69.9$, 62.8, 55.2, 32.5, 29.4, 22.4. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$ (224.30): C, 69.61; H, 8.99. Found: C, 69.52; H, 9.01.

5-[(p-Methoxybenzyl)oxy]pentanal (20). A mixture of 19 ($3.12 \mathrm{~g}, 13.3 \mathrm{mmol}$), anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$, and pyridinium chl orochromate ($4.81 \mathrm{~g}, 22.3 \mathrm{mmol}$, Fluka) was stirred at $20^{\circ} \mathrm{C}$ for 3 h . The black precipitate was taken off by filtration on a pad of silica gel (elution with 800 mL of $\mathrm{Et}_{2} \mathrm{O}$). Solvent evaporation and flash chromatography on silica gel (1:4 EtOAcllight petroleum ether) afforded a colorless oil (2.42 $\mathrm{g}, 82 \%) . \mathrm{R}_{\mathrm{f}}(1: 4 \mathrm{EtOA}$ /light petroleum ether $)=0.34$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.75(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.46 (t, J $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.75-$ $1.61(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.5,159.1$, 130.5, 129.2, 113.7, 72.5, 69.4, 55.2, 43.5, 29.1, 18.9. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$ (222.28): C, 69.64; H, 8.93. Found: C, 69.72; H, 8.88.
(2'S,3'R,5S)-5-Benzyl-N-\{ 7-[(p-methoxybenzyl)oxy]-3-hydroxy-2-methylheptoyl\}-2-oxazolidinone ((+)-8). In a Schlenk tube (100 mL , flame dried) (5S)-5-benzyl-2-oxazol idinone ((+)-21, $1.5 \mathrm{~g}, 6.44 \mathrm{mmol}$, prepared according to ref 12a) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL})$ under an Ar atmosphere. After cooling to $0^{\circ} \mathrm{C}, \mathrm{Bu}_{2} \mathrm{BOTf}{ }^{19}(2.12 \mathrm{~g}, 7.72$ mmol) dissol ved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added. $\mathrm{Et}_{3} \mathrm{~N}$ $(1.25 \mathrm{~mL}, 9 \mathrm{mmol})$ was then added dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 45 min the solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and $\mathbf{2 0}$ ($1.57 \mathrm{~g}, 7.08 \mathrm{mmol}$) in solution in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \mathrm{~mL})$ was added slowly. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then at $-20^{\circ} \mathrm{C}$ for 1 h , and at $0{ }^{\circ} \mathrm{C}$ for 1 h . Phosphate buffer ($\mathrm{pH} 7,20 \mathrm{~mL}$) was added, followed by $\mathrm{MeOH}(50 \mathrm{~mL})$. The resulting mixture was then added dropwise into a stirred solution of $\mathrm{MeOH}(80 \mathrm{~mL})$ and $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(7 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(120 \mathrm{~mL})$ was added. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(130 \mathrm{~mL}$, three times). The combined organic extracts were washed with a saturated aqueous solution of NaHCO_{3}, then with brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Sol vent evaporation and flash chromatography on silica gel ($1: 1$ EtOAc/light petroleum ether) afforded pure $(+)-8$ (single stereoisomer) as a colorless oil ($1.99 \mathrm{~g}, 68 \%$). R R_{f} (1:2 EtOAc/light petroleum ether) $=0.13 .[\alpha]^{25} \mathrm{D}=47(\mathrm{c}=0.2$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H})$, 7.26 (d, J $=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 6.88 (d, J $=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.70 (dddd, $\mathrm{J}=9.4,7.5,3.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{dd}, \mathrm{J}=16.6$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (dd, J $=16.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{qd}, \mathrm{J}=7.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.25 (dd, J = 13.4, 3.3 Hz, 1H), $2.80(\mathrm{dd}, \mathrm{J}=13.4$, $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.54,1.47-1.41(2 \mathrm{~m}, 4 \mathrm{H})$, $1.26(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 177.5, 159.1, 153.0, 135.0, 130.7, 129.4, 129.2, 128.9, 127.4, 113.7, 72.5, 71.3, 69.9, 66.1, 55.2, 55.1, 42.1, 37.8, 33.6, 22.7, 29.5, 10.4. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{6}$: C, $68.57 ; \mathrm{H}, 7.25 ; \mathrm{N}$, 3.08. Found: C, 68.45; H, 7.29; N, 3.09.
(2S,3R)-N-Methoxy-N-2-dimethyl-7-[(p-methoxybenz-yl)oxy]-3-[(triethylsilyl) oxy]heptanamide ((+)-22). (MeO)-$\mathrm{MeNH}-\mathrm{HCl}(746 \mathrm{mg}, 7.65 \mathrm{mmol}$) was suspended in anhydrous THF (14 mL) in a Schlenk tube under an Ar atmosphere. After cooling to $0{ }^{\circ} \mathrm{C}$, a 2 M solution of AlMe_{3} in heptane (3.82 mL ,
7.65 mmol) was added slowly. After the end of gas evolution, the solution was stirred at $20^{\circ} \mathrm{C}$ for 30 min . The solution was cooled to $0^{\circ} \mathrm{C}$, and (+)-8 ($870 \mathrm{mg}, 1.91 \mathrm{mmol}$) in solution in anhydrous THF (4 mL) was added. After stirring at $0^{\circ} \mathrm{C}$ for 25 min , the mixture was poured into a vigorously stirred mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(110 \mathrm{~mL})$ and $0.5 \mathrm{M} \mathrm{HCl}(70 \mathrm{~mL})$ and cool ed to $0{ }^{\circ} \mathrm{C}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated. The pale yellow residue was dissolved in anhydrous DMF (10 mL) and the solution cooled to $0{ }^{\circ} \mathrm{C}$. Imidazole ($260 \mathrm{mg}, 3.82 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{SiCl}(385 \mu \mathrm{~L}, 2.29 \mathrm{mmol})$ were added successively. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h , the mixture was allowed to stand at $20^{\circ} \mathrm{C}$ for 2 h . It was poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the sol vent was evaporated. Flash chromatography on silica gel (1:4 EtOAcllight petroleum ether) afforded a colorless oil ($636 \mathrm{mg}, 73 \%$). R_{f} (1:2 EtOAc/light petroleum ether $)=0.70 .[\alpha]^{25} \mathrm{D}=6\left(\mathrm{c}=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25,6.87(2 \mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.42(\mathrm{~s}$, 2 H), 3.95-3.91 (m, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.16 (br s, 3H), 2.96 (br s, 1H), 1.64-1.49, 1.47$1.39(2 \mathrm{~m}, 6 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $9 \mathrm{H}), 0.63(\mathrm{q}, \mathrm{J}=7.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.6,159.0,130.8,129.1,113.6,73.8,72.4,70.1,61.3,55.2$, $40.9,35.8,32.1,30.0,21.3,14.5,7.0,5.1$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{43}-$ $\mathrm{NO}_{5} \mathrm{Si}$ (453.70): C, 63.58; H, 9.49; N, 3.09. Found: C, 63.51; H, 9.32; N, 3.10.
(3S,4R)-3-Methyl-7-[(p-methoxybenzyl)oxy]-4-[(tri-methylsily)oxy]octan-2-one ((-)-6). A 3 M solution of MeMgCl in anhydrous THF ($2.65 \mathrm{~mL}, 7.94 \mathrm{mmol}$) was added dropwise to a solution of $(+)-22(0.6 \mathrm{~g}, 1.32 \mathrm{mmol})$ in anhydrous THF (10 mL) stirred at $0^{\circ} \mathrm{C}$ under an Ar atmosphere. After stirring at $0{ }^{\circ} \mathrm{C}$ for 3 h the mixture was poured into a vigorously stirred saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50$ $\mathrm{mL}) . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to dissolve the precipitate, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent evaporation and flash chromatography on silica gel ($1: 8 \mathrm{EtOAc/light}$ petroleum ether) afforded a colorless oil ($488 \mathrm{mg}, 90 \%$). $\mathrm{R}_{\mathrm{f}}(1: 4 \mathrm{EtOAc}$ light petroleum ether $)=0.73 .[\alpha]^{25} \mathrm{D}=-32\left(\mathrm{c}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26,6.88(2 \mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H})$, $4.43(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}$, 2 H), 2.63 (qd, J = 7.0, $4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.18 ($\mathrm{s}, 3 \mathrm{H}$), 1.65-1.56 (m, 2 H), 1.49-1.30 (m, 4H), $1.06(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.60(\mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 211.7,159.0,130.1,129.2,113.7,73.6,72.5,69.8$, 55.2, 52.0, 34.5, 30.0, 29.8, 22.3, 11.4, 6.9, 5.1. Anal. Cal cd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}(408.65)$: C, $67.65 ; \mathrm{H}, 9.80 ; \mathrm{Si}, 6.86$. Found: C, 67.68; H, 9.91; Si, 6.97.
(α R,3S,4R)-3-Methyl-8-[(p-methoxybenzyl)oxy]-4-[α -methoxy- α-(trifluoromethyl)- α-phenylacetoxy]octan-2one ($(+)-6$ M(R). A mixture of $(-)-6(50 \mathrm{mg}, 0.123 \mathrm{mmol})$, anhydrous THF (6 mL), and HF - pyridine ($0.32 \mu \mathrm{~L}$) was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was poured into a saturated aqueous solution of NaHCO_{3} (15 mL) and extracted with EtOAc. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Sol vent evaporation in vacuo gave a pale yellow oil ($36 \mathrm{mg}, 100 \%$, ($3 \mathrm{~S}, 4 \mathrm{R}$)-4-hydroxy-3-methyl-7-[(p-methoxybenzyl)oxy]octan-2-one), from which 20 mg (0.06 mmol) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Pyridine ($16 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and (R)-(-)- $\alpha-$ methoxy- $\alpha-$ (trifluoromethyl)- α-phenylacetyl chloride ($19 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) were added. After stirring at $0^{\circ} \mathrm{C}$ for 15 min , the mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 h . After the addition of EtOAc $(10 \mathrm{~mL})$, the solution was washed successively with 1 N aqueous HCl (2 mL), $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. After drying $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$, the solvent was evaporated. Flash chromatography on silica gel (1:4 EtOAc/light petroleum ether) afforded a col orless oil ($29 \mathrm{mg}, 83 \%$). R_{f} (1:4 EtOAc/light petroleum ether) $=0.37 .[\alpha]^{25} \mathrm{D}=5\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.55-7.52,7.39-7.38(2 \mathrm{~m}, 5 \mathrm{H}), 7.25,6.88$ (2d, J = $8.7 \mathrm{~Hz}, 4 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}$, 3 H), $3.41(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{J}=7.0,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.06(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.56,1.43-1.36(2 \mathrm{~m}, 6 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=7.1$
$\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 M Hz, CDCl_{3}): $\delta 207.8,166.3,159.4$, 132.2, 130.6, 129.6, 129.3, 128.4, 127.3, 122.1, 113.8, 76.7, 72.6, 69.5, 55.5, 55.3, 49.5, 31.6, 29.3, 29.0, 22.3, 11.1. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{~F}_{3}$ (510.55): C, 63.52; H, 6.51. F ound: C, 63.66; H, 6.63.
(α S,3S,4R)-3-Methyl-8-[(p-methoxybenzyl)oxy]-4-[$\alpha-$ methoxy- α-(trifluoromethyl)- $\alpha-$ phenylacetoxy]octan-2one (($-\mathbf{)} \mathbf{- 6 M (S)) . ~ T h e ~ s a m e ~ p r o c e d u r e ~ a s ~ f o r ~ t h e ~ p r e p a r a t i o n ~}$ of $(+)-\mathbf{6 M}(\mathbf{R})$ was adopted, starting with 16 mg of $(3 \mathrm{~S}, 4 \mathrm{R})-3-$ 4-hydroxymethyl-7-[(paramethoxybenzyl)oxy]-octan-2-one and using (S)-(+)- α-methoxy- α-(trifluoromethyl)- α-phenylacetyl chloride (Fluka). (-)-6M(S) was obtained as a colorless oil (22.6 $\mathrm{g}, 81 \%$). $\mathrm{R}_{\mathrm{f}}(1: 4 \mathrm{EtOAc} / \mathrm{light}$ petroleum ether $)=0.36 .[\alpha]^{25} \mathrm{D}=$ $-132\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.51$, $7.38(2 \mathrm{~m}, 5 \mathrm{H}), 7.24,6.88(2 \mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 5.48,5.44(\mathrm{~m}$, $1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.72$ (qd, J $=7.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.50$, $1.31-1.25(2 \mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(100.6$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.8,166.2,159.2,132.0,130.6,129.6,128.4$, $127.5,113.8,76.4,72.6,69.5,55.4,55.3,49.6,31.6,29.3,29.0$, 22.1, 10.8. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{~F}_{3}$ (510.55): C, 63.52; H, 6.51. F ound: C, 63.65; H, 6.58 .
(4S,5R ,6S)-2,2,4,5-Tetramethyl-6- 4 [(p-methoxybenz-yl)oxy]butyl\}-1,3-dioxane ((-)-6A). A mixture of (-)-6 (165 $\mathrm{mg}, 0.41 \mathrm{mmol})$, anhydrous THF (15 mL), and HF - pyridine (1 mL) was stirred at $0^{\circ} \mathrm{C}$ for 1 h . It was then poured into a saturated aqueous solution of NaHCO_{3} and extracted with EtOAc. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried $\left(\mathrm{MgSO}_{4}\right)$, and the sol vent was evaporated in vacuo. The residue was dissolved in THF (2 mL) and $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. One molar $\mathrm{Et}_{2} \mathrm{BOMe}$ in THF $(0.6 \mathrm{~mL}$, 0.6 mmol) was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , and $\mathrm{NaBH}_{4}(23 \mathrm{mg}, 0.61 \mathrm{mmol})$ was added. After stirring at $-78^{\circ} \mathrm{C}$ for 45 min , $\mathrm{AcOH}(20 \mu \mathrm{~L})$ was added and the mixture was poured into a saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with EtOAc. The combined organic extracts were washed with brine and dried (MgSO_{4}). The solvent was evaporated in vacuo and the residue dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$. The solvent was evaporated in vacuo. The same operation was repeated once more. The resulting colorless oil was dissolved in a mixture of acetone (1 mL) and 2,2dimethoxypropane (1 mL), containing p-toluenesulfonic acid (6 mg). After stirring at $20^{\circ} \mathrm{C}$ for 90 min the solvent was evaporated and the residue purified by flash chromatography on silica gel (1:8 EtOAc/light petroleum ether), affording a pale yellow oil ($88 \mathrm{mg}, 64 \%$). R_{f} (1:8 EtOAc/light petroleum ether) $=0.40 .[\alpha]^{25} \mathrm{D}=-103\left(\mathrm{c}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.27,6.88(2 \mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.12$ $(q d, \mathrm{~J}=6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(d d d, \mathrm{~J}=8.8,5.0,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.60,1.38-1.27$ $(2 \mathrm{~m}, 7 \mathrm{H}), 1.43,1.40(2 \mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.1,130.7$, $129.2,113.8,98.7,73.2,72.5,69.9,69.0,55.3,35.9,32.6,30.1$, 29.7, 22.3, 19.7, 19.0, 4.3. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$ (336.47): C, 71.39; H, 9.59. Found: C, 71.45; H, 9.56.
(4S,E)-Ethyl 5-Benzyloxy-4-methylpent-2-enoate ((+)23). DMSO ($6.2 \mathrm{~mL}, 87 \mathrm{mmol}$) was added to a stirred solution of oxalyl chloride ($3.57 \mathrm{~mL}, 41.5 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (175 mL) cooled to $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 20 min , (+)-10 (prepared according ref 24 and 25; $6.5 \mathrm{~g}, 36.1 \mathrm{mmol}$) in solution in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ was added dropwise. After stirring at $-78{ }^{\circ} \mathrm{C}$ for $20 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{~mL})$ was added and the mixture stirred at $-30^{\circ} \mathrm{C}$ for 30 min . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (400 mL , three times). The combined organic extracts were washed with brine $(250 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to afford a paleyellow oil ((R)-3-benzyloxy-2-methylpropanal). A mixture of $\operatorname{LiBr}(4.5 \mathrm{~g}, 52 \mathrm{mmol}), \mathrm{MeCN}(110 \mathrm{~mL})$, and triethyl phosphonoacetate ($7.8 \mathrm{~mL}, 39.1 \mathrm{mmol}$) was stirred at $20{ }^{\circ} \mathrm{C}$ for 5 min . EtN (i-Pr) $2(8.4 \mathrm{~mL}, 48.8 \mathrm{mmol})$ was added portionwise, and stirring was continued for an additional 10 min. A solution of the crude (R)-3-benzyloxy-2-methylpropanal ($5.8 \mathrm{~g}, 32.5 \mathrm{mmol}$) in MeCN (20 mL) was added, and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 11 h . The mixture was then poured into 1 M aqueous $\mathrm{HCl}(250 \mathrm{~mL})$ under vigorous stirring.

The aqueous layer was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Flash chromatography on silica gel (1:6 EtOAc/light petroleum ether) afforded a colorless oil (7.16 g, $80 \%) . R_{f}(1: 10 \mathrm{EtOAc} / l i g h t$ petroleum ether $)=0.35 .[\alpha]^{25} \mathrm{D}=6$ $\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38-7.29(\mathrm{~m}$, $5 \mathrm{H}), 6.96$ (dd, J $=15.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (dd, J $=15.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{dd}, \mathrm{J}=$ $9.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, \mathrm{J}=9.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.66(\mathrm{~m}$, $1 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta 166.7,151.1,138.2,128.4,127.6$, 121.0, 73.9, 73.1, 60.2, 36.8, 16.0, 14.2. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$ (248.32): C, 72.58; H, 8.06. Found: C, 72.64; H, 8.14.
(2S,3R,4S)-Ethyl 5-Benzyloxy-4-methyl-2,3-bis[(methoxymethyl)oxy]pentanoate ((+)-26) and (2R,3S,4S)-Ethyl 5-Benzyloxy-4-methyl-2,3-bis[(methoxymethyl)oxy]pentanoate ((-)-27). A mixture of (+)-23 (11.4 g, 46.1 mmol), t-BuOH $(90 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(90 \mathrm{~mL})$, methanesulfonamide $(4.38 \mathrm{~g}$, $46 \mathrm{mmol})$, and enriched AD-mix- $\beta\left(70 \mathrm{~g}, \mathrm{~K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, 47.7 \mathrm{~g}\right.$; $\mathrm{K}_{2} \mathrm{CO}_{3}, 20.05 \mathrm{~g}$; (DHQD) $\left.2 \mathrm{PHAL}, 1.88 \mathrm{~g}, \mathrm{~K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}, 370 \mathrm{mg}\right)$ was stirred at $20^{\circ} \mathrm{C}$ for 12 h . EtOAc (200 mL) and anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{3}(55 \mathrm{~g})$ were added, and the mixture was stirred at 20 ${ }^{\circ} \mathrm{C}$ for 45 min . The precipitate was filtered off and the solution diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and extracted with EtOAc. The combined organic extracts were washed with 1 M aqueous HCl , then with brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent evaporation afforded a 4:1 mixture of diols $\mathbf{2 4}$ and $\mathbf{2 5}$ as a pale yellow oil, which was dissolved ($13 \mathrm{~g}, 46.1 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (300 mL). After cooling to $0{ }^{\circ} \mathrm{C}$, EtN (i-Pr) $)_{2}(95 \mathrm{~mL}, 0.553 \mathrm{mmol}$) and $\mathrm{MeOCH} \mathrm{H}_{2} \mathrm{Cl}(28 \mathrm{~mL}, 0.369 \mathrm{~mol})$ were added dropwise. $\mathrm{Bu}_{4} \mathrm{NI}(50 \mathrm{mg}$) was then added, and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 12 h . The solution was poured into vigorously stirred 1 M aqueous $\mathrm{HCl}(500 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent evaporation and flash chromatography on silica gel (1:6 EtOAc/light petroleum ether) afforded a 4:1 mixture of $(+)-26$ and $(-)$ - 27 ($14.6 \mathrm{~g}, 85 \%$), which can be separated at this stage by a second flash chromatography to obtain an analytical sample. For preparative purposes, the mixture of $(+)-26$ and $(-)-27$ can be used as such in the following steps (see below: mixture of $(+)$-30 and (-)-31).

Data for (+)-26: R_{f} (1:4 EtOAc/light petroleum ether) $=$ 0.35. $[\alpha]^{25} \mathrm{D}=20\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.71,4.68(2 \mathrm{~s}, 4 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.17(\mathrm{~m}, 3 \mathrm{H})$, 4.03 (dd, J $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ (dd, J $=9.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (dd, J $=9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69,3.35(2 \mathrm{~s}, 6 \mathrm{H}), 2.10-2.06(\mathrm{~m}$, $1 \mathrm{H}), 1.30\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.05(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta 170.8,138.4,128.3,127.6,127.5$, 98.2, 96.8, 79.7, 78.0, 73.0, 72.3, 61.0, 56.4, 56.2, 35.5, 14.1, 12.5. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{7}$ (370.44): C, 61.62; H, 8.11. Found: C, 61.65; H, 8.14.

Data for (-)-27: $\mathrm{R}_{\mathrm{f}}(1: 4 \mathrm{EtOAc/light}$ petroleum ether) $=$ 0.24. $[\alpha]^{25}{ }_{\mathrm{D}}=-66\left(\mathrm{C}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(4S,5R,6S,E)-Diethyl 5,6-Bis[(methoxymethyl)oxy]-4-methylhept-2-ene-dioate ((-)-28). A mixture of $(+)$-26 (10 $\mathrm{g}, 27 \mathrm{mmol}$), MeOH (400 mL), and 5\% Pd on charcoal (0.6 g) was degassed and then pressurized with H_{2} (1 atm). After shaking at $20^{\circ} \mathrm{C}$ for 12 h the catalyst was filtered off on a pad of silica gel (eluting with EtOAc). Solvent evaporation afforded (2R,3R,4S)-ethyl 5-hydroxy-2,3-bis[(methoxymethyl)oxy]-4methylpentanoate as a col orless oil (7.4 g, 98\%). DMSO (4.5 $\mathrm{mL}, 63.6 \mathrm{mmol}$) was added to a stirred solution of oxalyl chloride ($2.6 \mathrm{~mL}, 30.4 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ cooled to $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 15 min , the crude (2S,3R,4S)-ethyl 5-hydroxy-4-methyl-2,3-bis[(methoxymethyl)oxy]pentanoate in solution in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ was added dropwise under stirring. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 30 min, $E t_{3} \mathrm{~N}(20 \mathrm{~mL})$ was added and stirring was continued at $-30{ }^{\circ} \mathrm{C}$ for 30 min . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to afford (2S,3R,4S)-ethyl 2,3-bis[(methoxymethyl)oxy]-4-methyl-5-oxopentanoate as a pale yellow oil ($7.12 \mathrm{~g}, 97 \%$). A mixture of $\operatorname{LiBr}(7.8 \mathrm{~g}, 89.6 \mathrm{mmol}), \mathrm{MeCN}(150 \mathrm{~mL})$, and
triethyl phosphonoacetate ($13.3 \mathrm{~mL}, 66.6 \mathrm{mmol}$) was stirred at $20^{\circ} \mathrm{C}$ under an Ar atmosphere for 5 min . $\mathrm{EtN}(\mathrm{i}-\mathrm{Pr})_{2}$ (14.4 $\mathrm{mL}, 84.5 \mathrm{mmol}$) was added, and the mixture stirred for an additional 10 min . The crude aldehyde obtained above dissolved in MeCN (10 mL) was added, and the mixture was stirred at $20^{\circ} \mathrm{C}$ overnight. It was then poured into 1 M aqueous HCl under vigorous stirring. The aqueous layer was extracted with EtOAc. The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent evaporation and flash chromatography on silica gel ($1: 4 \mathrm{EtOAc/light}$ petroleum ether) afforded a colorless oil ($6.6 \mathrm{~g}, 71 \%$). R_{f} (1:2 EtOAc/light petroleum ether $)=0.47 .[\alpha]^{25} 5_{\mathrm{D}}=-25\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.05(\mathrm{dd}, \mathrm{J}=15.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.87 (dd, J $=15.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73,4.69(2 \mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2$ H), 4.68, $4.66(2 \mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.16(\mathrm{~m}, 5 \mathrm{H}), 3.90$ (dd, J = 6.9, 3.3 Hz, 1H), 3.42, 33.5 ($2 \mathrm{~s}, 6 \mathrm{H}$), 2.79-2.76 (m, 1H), $1.32-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta 170.6,166.4,149.9,121.7,97.8,96.9$, 81.6, 76.6, 61.2, 60.3, 56.7, 56.4, 38.4, 15.3, 14.2, 14.1. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{8}$ (348.39): C, 61.62; $\mathrm{H}, 8.11$. Found: C, 61.65; H, 8.14.

Ethyl 4-Deoxy-5,6-di-O-(methoxymethyl)-4-methyl-D-glycero-L-galacto-heptar-1-ate-7,3-lactone ((-)-29). A 0.1 M solution of OsO_{4} in $\mathrm{CCl}_{4}(5.4 \mathrm{~mL}, 0.54 \mathrm{mmol}, 7 \% \mathrm{~mol})$ was added dropwise to a stirred solution of (-)-28(2.7 g, 7.7 mmol) and N -methylmorpholine- N -oxide ($2.64 \mathrm{~g}, 19.4 \mathrm{mmol}$) in acetone (40 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 12 h . After dilution with EtOAc (150 mL) and cooling to $0^{\circ} \mathrm{C}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(9.5 \mathrm{~g})$ was added portionwise and the mixture stirred at $0^{\circ} \mathrm{C}$ for 45 min . The precipitate was filtered off, and EtOAc (200 mL) was added. The solution was washed with 1 M aqueous HCl , then with brine. The aqueous layers were extracted with EtOAc. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated in vacuo. The resulting pale yellow oil was dissolved in THF (60 mL), and concentrated aqueous HCl (15 drops) was added at $0^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{NaHCO}_{3}$ was added portionwise and the mixture stirred at $20^{\circ} \mathrm{C}$ for 10 min . The precipitate was filtered off, and the solvent was evaporated to afford (-)-29 as a pale yellow oil pure enough for the next steps ($2.5 \mathrm{~g}, 96 \%$). An analytical sample of (-)-29 was obtained by flash chromatography (2:3 EtOAc/light petroleum ether), giving a white solid. $\mathrm{Mp}: 85-87{ }^{\circ} \mathrm{C}$. $\mathrm{R}_{\mathrm{f}}(2: 3 \mathrm{EtOAc} / \mathrm{light}$ petroleum ether $)=$ $0.24 .[\alpha]^{25} \mathrm{D}=-22\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 4.97,4.77(2 \mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.91,4.70(2 \mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.45 (dd, J = 10.5, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.33 (q , J = 7.2 $\mathrm{Hz}, 2 \mathrm{H}), 4.21(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, \mathrm{J}=8.9,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.44,3.43(2 \mathrm{~s}, 6 \mathrm{H}), 3.16$ (br s, 1H), 2.41-2.34 (m, 1H), $1.32(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta 171.4,169.4,97.4,96.9,81.7,78.2,76.0$, 69.5, 62.6, 56.3, 35.4, 14.2, 14.1. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{9}$ (336.33): C, 50.00; H, 7.14. Found: C, 50.03; H, 7.19.

Ethyl [(tert-Butyl)dimethylsilyl 4-Deoxy-2,3-di-O-(meth-oxymethyl)-4-methyl-6-0-(tert-butyl)dimethylsilyl- β-D-glycero-L-gluco-heptapyranosid]uronate ((+)-30). One moIar (i-Bu) $)_{2}$ AlH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \mathrm{~mL}, 55 \mathrm{mmol})$ was added dropwise to a stirred solution of (-)-29 ($6.2 \mathrm{~g}, 18.4 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{~mL})$ cooled to $-78^{\circ} \mathrm{C}$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, \mathrm{MeOH}(10 \mathrm{~mL}$) was added and the mixture was poured into vigorously stirred 1 M aqueous $\mathrm{HCl}(300 \mathrm{~mL})$. The aqueous layer was extracted with CHCl_{3}. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated in vacuo, affording a pale yellow oil ($4.74 \mathrm{~g}, 76 \%$ of pyranose), which was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (120 mL) and cooled to $0{ }^{\circ} \mathrm{C} .2,6$-Lutidine ($8.1 \mathrm{~mL}, 70 \mathrm{mmol}$) and (t-Bu)Me2 $\mathrm{SiOSO}_{2} \mathrm{CF}_{3}(9 \mathrm{~mL}, 39 \mathrm{mmol})$ were added. After stirring at $0{ }^{\circ} \mathrm{C}$ for 2 h , the mixture was poured into 2 M aqueous NaOH . The aqueous layer was extracted with CHCl_{3}. The combined organic extracts were washed with 1 M aqueous HCl , then with brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The sol vent was evaporated and the residue purified by flash chromatography on silica gel ($1: 15$ EtOAc/light petroleum ether), affording a colorless oil ($6.7 \mathrm{~g}, 64 \%$). $\mathrm{R}_{\mathrm{f}}(1: 4 \mathrm{EtOAc/light}$ petroleum ether) $=0.68 \cdot[\alpha]^{25} \mathrm{D}=+8\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 5.01,4.74(2 \mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.98,4.73(2 \mathrm{~d}, \mathrm{~J}=$
$5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.47 (d, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37 (d, J $=1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.22-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.51$ (dd, J = 10.4, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45, 3.43 $(2 \mathrm{~s}, 6 \mathrm{H}), 3.31(\mathrm{dd}, \mathrm{J}=9.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, \mathrm{J}=10.3$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.03$ $(\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.93,0.87(2 \mathrm{~s}, 18 \mathrm{H}), 0.13,0.07,0.05,0.03$ $(4 \mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.1,98.7,98.3$, 97.7, 82.0, 81.9, 78.9, 71.7, 61.1, 56.4, 56.3, 36.5, 25.8, 25.6, 18.4, 17.7, 14.0, 13.0, $-4.0,-4.4,-5.1,-5.6$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{54} \mathrm{O}_{9} \mathrm{Si}_{2}$ (566.88): C, $55.12 ; \mathrm{H}, 9.54 ; \mathrm{Si}, 9.89$. Found: C, 55.24; H, 9.58; Si, 9.72.

Ethyl [(tert-Butyl)dimethylsilyl 4-Deoxy-2,3-di-O-(meth-oxymethyl)-4-methyl-6-O-(tert-butyl)dimethylsilyl- β-D-glycero-L-altro-heptopyranosid]uronate ((-)-31). When the synthesis started with a 4:1 mixture of (+)-26 and (-)-27, (-)-31 was isol ated in the above flash chromatography. $\mathrm{R}_{\mathrm{f}}(1: 4$ EtOAc/light petroleum ether) $=0.71 .[\alpha]^{25} \mathrm{D}=-23(\mathrm{c}=0.5$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.99(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.84,4.64(2 \mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.75,4.70(2 \mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{dd}$, $\mathrm{J}=10.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, \mathrm{J}=3.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}$, $\mathrm{J}=3.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41,3.38(2 \mathrm{~s}, 6 \mathrm{H}), 2.34-2.32(\mathrm{~m}, 1 \mathrm{H})$, $1.30(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94,0.87$ ($2 \mathrm{~s}, 18 \mathrm{H}$), $0.16,0.10,0.07,0.04(4 \mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 172.3,97.3,97.0,94.3,79.7,77.6,73.7,72.5,60.8$, $55.8,55.4,29.5,25.9,25.8,18.4,17.9,14.1,12.4,-3.9,-4.1$, $-5.1,-5.5$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{54} \mathrm{O}_{9} \mathrm{Si}_{2}$ (566.88): C, 55.12 ; H, 9.54; Si, 9.89. Found: C, 55.22; H, 9.42; Si, 9.91.
(tert-Butyl)dimethyIsilyl 4-Deoxy-2,3-di-O-(methoxy-methyl)-4-methyl-60-(tert-butyl)dimethylsilyl)- β-D-glycero-L-gluco-heptodialdo-1,5-pyranoside ($(+$)-7). One molar (i$\mathrm{Bu})_{2} \mathrm{AlH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.3 \mathrm{~mL}, 93 \mathrm{mmol})$ was slowly added to a stirred solution of (+)- $\mathbf{3 0}(2.1 \mathrm{~g}, 37 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(30 \mathrm{~mL}\right.$) cooled to $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 30 min , $\mathrm{MeOH}(5 \mathrm{~mL}$) was added and the mixture poured into 1 M aqueous $\mathrm{HCl}(60 \mathrm{~mL})$. The aqueous layer was extracted with CHCl_{3}. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. After solvent evaporation in vacuo the residue was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (18 mL), and Dess-Martin periodinane (1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one, 2.8 g , 65 mmol) was added. After stirring at $20^{\circ} \mathrm{C}$ for $90 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$, and anhydrous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(12 \mathrm{~g})$ were added. After vigorous stirring for 5 min , the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (50 mL , twice). The combined organic extracts were washed with a saturated aqueous solution of NaHCO_{3}, then with HCl , and dried ($\mathrm{M} \mathrm{SSO}_{4}$). Solvent evaporation and flash chromatography on silica gel ($1: 4 \mathrm{EtOA}$ clight petrol eum ether) afforded a colorless oil ($1.74 \mathrm{~g}, 90 \%$). R_{f} (1:4 EtOAclight petroleum ether) $=0.69 .[\alpha]^{25} \mathrm{D}=+51\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.69(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01,4.74(2 \mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.97,4.72(2 \mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=7.5$ Hz, 1H), 4.11-4.09 (m, 2H), 3.45, 3.43 (2s, 6H), 3.44 (masked dd, 1H), $3.33(\mathrm{dd}, \mathrm{J}=9.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, \mathrm{J}=10.3,9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$, $0.88(2 \mathrm{~s}, 18 \mathrm{H}), 0.11,0.09,0.05,0.04(4 \mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.1,98.7,98.2,97.6,81.7,81.6,79.1,76.7$, $56.4,56.3,36.4,25.7,25.6,17.7,12.7,-4.2,-4.3,-5.0,-5.3$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{Si}_{2}$ (522.83): C, 55.14; H, 9.64. Found: C, 55.58; H, 9.62.
(tert-Butyl)dimethylsilyl 7-0-Acetyl-4,8,10,12,13,14-hexa-deoxy-2,3-0-bis(methoxymethyl)-4,10-dimethyl-15-0-(p-methoxybenzyl)-6-0-(tert-butyl)dimethylsilyl]-11-0-(tri-ethylsilyl)- β-D-galacto-L-gluco or β-D-gulo-L-gluco-pen-tadecopyranosid-9-ulose ((+)-32). In a Schlenk tube (flame dried), $1.4 \mathrm{M} \mathrm{n-BuLi}$ in hexanes ($1.3 \mathrm{~mL}, 1.83 \mathrm{mmol}$) was added to a stirred solution of (i-Pr) $)_{2} \mathrm{NH}(0.3 \mathrm{~mL}, 2.1 \mathrm{mmol})$ in anhydrous THF (18 mL) cooled to $-60^{\circ} \mathrm{C}$. After stirring at $-60^{\circ} \mathrm{C}$ for 15 min , the mixture was cooled to $-78^{\circ} \mathrm{C}$, and (-)-6 ($588 \mathrm{mg}, 1.44 \mathrm{mmol}$) in solution in anhydrous THF (1.5 mL) was added. After stirring at $-78^{\circ} \mathrm{C}$ for $15 \mathrm{~min}(+)-7(683 \mathrm{mg}$, 1.31 mmol) was added in solution in anhydrous THF (2 mL). After stirring for 15 min at $-78^{\circ} \mathrm{C}$, the mixture was poured into half-saturated aqueous sol ution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$. The aqueous Iayer was extracted with EtOAc. The combined extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$.

After solvent evaporation, the residue was dissolved at $0{ }^{\circ} \mathrm{C}$ in a mixture of pyridine (7 mL) and $\mathrm{Ac}_{2} \mathrm{O}(7 \mathrm{~mL})$, containing 4-(dimethylamino)pyridine (20 mg). After stirring at $0{ }^{\circ} \mathrm{C}$ for 40 min , the solvents were evaporated in vacuo to dryness and the residue was purified by flash chromatography on silica gel (1:2 EtOAcllight petroleum ether), affording a col orless oil (1.05 $\mathrm{g}, 75 \%) . \mathrm{R}_{\mathrm{f}}(1: 4 \mathrm{EtOAc} / \mathrm{light}$ petroleum ether $)=0.48 .[\alpha]^{25} \mathrm{D}=$ 15 ($\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25$ (d , J $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{dt}, \mathrm{J}=10.0,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.98,4.73(2 \mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.94,4.70(2 \mathrm{~d}, \mathrm{~J}=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, \mathrm{J}=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.43,3.42(2 \mathrm{~s}, 6 \mathrm{H})$, $3.42\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.27(\mathrm{dd}, \mathrm{J}=9.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (dd, J $=10.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, \mathrm{J}=10.0,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.02(\mathrm{dd}, \mathrm{J}=17.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, \mathrm{J}=17.8,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.60-$ $1.53(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ $(\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.94,0.88(2 \mathrm{~s}$, $18 \mathrm{H}), 0.60(\mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.13,0.09,0.07,0.06(4 \mathrm{~s}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 210.2,196.0,159.0,130.7$, 129.1, 113.7, 98.6, 98.2, 97.9, 82.4, 82.8, 81.8, 78.9, 73.4, 73.0, $72.6,72.5,70.0,56.3,56.2,55.2,52.4,41.6,37.1,35.4,29.9$, 26.0, 25.6, 21.8, 21.0, 18.4, 17.8, 13.4, 12.0, 7.0, 5.2, -4.0, -4.4, -4.8, -5.3. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{92} \mathrm{O}_{13} \mathrm{Si}_{3}(973.52)$: $\mathrm{C}, 60.49$; H, 9.47; Si, 8.45. Found: C, 60.08; H, 9.47; Si, 8.64.
(tert-Butyl)dimethylsilyl 7-O-Acetyl-4,8,10,12,13,14-hexadeoxy-2,3-0-bis(methoxymethyl)-4,10-dimethyl-15-0-(p-methoxybenzyl)-6-0-[(tert-butyl)dimethylsilyl]-9,11-O-bis(triethylsilyl)- β-D-glycero-L-ido or I-talo-L-glucopentadecopyranoside ($(+)-33) . \mathrm{HF}$ - pyridine (1.5 mL) was added to a stirred solution of $(+)-32(620 \mathrm{mg}, 0.637 \mathrm{mmol})$ in anhydrous THF (30 mL) cooled to $-20^{\circ} \mathrm{C}$ under an Ar atmosphere. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 15 min and at $0{ }^{\circ} \mathrm{C}$ for 1 h . It was poured into a saturated aqueous solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc. The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent evaporation in vacuo afforded a pale yellow oil ($547 \mathrm{mg}, 100 \%$ (tert-butyl)dimethylsilyl 7-O-acetyl-4,8,10,12,13,14-hexadeoxy-2,3-O-bis-(methoxymethyl)-4,10-dimethyl-15-O-(p-methoxybenzyl)-6-0-[(tert-butyl)dimethylsilyl]- β-D-galacto-L-gluco- or β-D-gulo-L-gluco-pentadecopyranosid-9-ulose), which was dissolved in THF (4 mL) and $\mathrm{MeOH}(1 \mathrm{~mL})$. After cooling to $-78^{\circ} \mathrm{C} 1 \mathrm{M}$ $\mathrm{Et}_{2} \mathrm{BOMe}^{22}$ in THF ($0.83 \mathrm{~mL}, 0.83 \mathrm{mmol}$) was added. After stirring at $-78{ }^{\circ} \mathrm{C}$ for $15 \mathrm{~min}, \mathrm{NaBH}_{4}(34 \mathrm{mg}, 0.89 \mathrm{mmol})$ was added and the stirring continued for 1 h at $-78^{\circ} \mathrm{C}$. AcOH (10 drops) was added and the mixture poured into a saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ under vigorous stirring. The aqueous layer was extracted with EtOAc. The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated in vacuo. The residue was taken up in MeOH (4 mL) and the sol vent evaporated in vacuo. This operation was repeated once to afford a pale yellow oil (427 $\mathrm{mg}, 78 \%$, of (tert-butyl)dimethylsilyl 7-O-acetyl-4,8,10,12,13, 14-hexadeoxy-2,3-0-bis(methoxymethyl)-4,10-dimethyl-15-0-(p-methoxybenzyl)-6-O-[(tert-butyl)dimethylsilyl]- β-D-glycero-L-ido or I-talo-L-gluco-pentadecopyranoside), which was dissolved in dry DMF (4 mL). After cooling to $0{ }^{\circ} \mathrm{C}$, imidazole $(169 \mathrm{mg}, 2.48 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{SiCl}(267 \mu \mathrm{~L}, 1.59 \mathrm{mmol})$ were added and the mixture stirred at $20^{\circ} \mathrm{C}$ for 3 h . The mixture was then poured into $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent evaporation and flash chromatography on silica gel (1:7 EtOAclight petroleum ether) afforded a colorless oil ($346 \mathrm{mg}, 50 \%$). $[\alpha]^{25} \mathrm{D}=13$ (c = $0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27,6.88$ (2d, J $=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90$ (ddd, J $=10.1,4.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.72(\mathrm{~m}, 2 \mathrm{H})$, $4.43(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, \mathrm{J}=4.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{t}$, $\mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.45,3.42(2 \mathrm{~s}, 6 \mathrm{H}), 3.24(\mathrm{dd}, \mathrm{J}=9.0,7.2 \mathrm{~Hz}$, 1 H), 3.12 (dd, J $=9.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98 (dd, J $=10.8,1.6 \mathrm{~Hz}$, 1H), 2.07-1.98 (m, 1H), 1.96 (s, 3H), 1.92-1.85 (m, 3H), 1.68$1.63(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96$ $(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 18 \mathrm{H}), 0.91,0.90(2 \mathrm{~s}, 18 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$,
$3 \mathrm{H}), 0.60(\mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, 12 \mathrm{H}), 0.14,0.12,0.08,0.07(4 \mathrm{~s}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0,159.0,130.8,129.1$, $113.7,98.6,98.2,97.7,82.5,82.0,77.1,73.6,73.5,72.5,70.3$, $68.7,56.35,56.3,55.2,40.0,38.0,35.5,34.3,30.5,25.8,25.7$, 21.1, 18.1, 17.9, 13.4, 9.2, 7.0, 6.95, 5.4, 5.2, -4.0, -4.4, -4.7, -5.2. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{108} \mathrm{O}_{13} \mathrm{Si}_{4}$ (1089.45): C, 60.66; H, 9.93; Si, 10.29. Found: C, 60.52; H, 9.97; Si, 10.13.
(tert-Butyl)dimethylsilyl 7-O-Acetyl-4,8,10,12,13,14-hexadeoxy-2,3-0-bis(methoxymethyl)-4,10-dimethyl-15-O-(p-methoxybenzyl)-6-0-[(tert-butyl)dimethylsilyl]-9,11-O-isopropyliden- β-D-glycero-L-ido or I-talo-L-glucopantadecopyranoside (34). Crude (tert-butyl)dimethylsilyl 7-O-acetyl-4,8,10,12,13,14-hexadeoxy-2,3-0-bis(methoxymethyl)-4,10-dimethyl-15-O-(p-methoxybenzyl)-6-O-[(tert-butyl)dimeth-ylsilyl]- β-D-glycero-L-ido or I-talo-L-gl uco-pentadecopyranoside obtained as above ($50 \mathrm{mg}, 0.058 \mathrm{mmol}$) was dissolved in acetone (1.2 mL) and 2,2-dimethoxypropane (1.2 mL) containing paratoluenesulfonic acid (5 mg). After stirring at $20^{\circ} \mathrm{C}$ for 6 h , the solvents were evaporated and the residue was chromatographied on silica gel (1:8 EtOAc/light petroleum ether) to afford a col orless oil ($42 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.26,6.88(2 \mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.99,4.70(2 \mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.94,4.73(2 \mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.50,4.48(\mathrm{~m}$, $1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91,3.89(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.44,3.42(2 \mathrm{~s}, 6 \mathrm{H}), 3.42(\mathrm{dd}, \mathrm{J}=9.9,1.8 \mathrm{H}, 1 \mathrm{H}), 3.29(\mathrm{dd}, \mathrm{J}=$ $9.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, J = 9.7, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (dd, J = 18.1, $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (dd, J $=18.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.94-1.91 (m, 1H) , 1.66, 1.59 (m, 2H) , 1.43, 1.32 (2s, 6H), 1.43, 1.22 (m, 7 H), 1.02 ($\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}$) , 0.96, 0.87 ($2 \mathrm{~s}, 18 \mathrm{H}$), 0.83 (d, J $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.13,0.05,0.04,0.03(4 \mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 209.9,159.1,130.7,129.2,113.7,98.8,98.6$, $97.8,96.1,82.1,81.7,79.7,78.0,73.0,72.5,69.9,68.3,56.3$, 55.2, 42.3, 36.4, 34.4, 32.6, 29.8, 29.6, 25.9, 25.6, 22.0, 19.4, 18.3, 17.8, 13.3, 5.2, -4.3, -4.4, -4.7, -5.3. Anal. Cal cd for $\mathrm{C}_{44} \mathrm{H}_{80} \mathrm{O}_{12} \mathrm{Si}_{2}$ (857.28): C, 61.65; H, 9.41. Found: C, $61.42 ; \mathrm{H}$, 9.35.
(tert-Butyl)dimethylsilyl 4,8,10,12,13,14-Hexadeoxy-2,3-O-bis(methoxymethyl)-4,10-dimethyl-15-0-(p-meth-oxybenzyl)-6-0-[(tert-butyl)dimethylsilyl]-9,11-(bis(tri-ethylsilyl)- β-d-gulo-L-gluco-pentadecopyranosid-7ulose ((+)-35). A mixture of (+)-33 ($300 \mathrm{mg}, 0.276 \mathrm{mmol}$), anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and $1 \mathrm{M}(\mathrm{i}-\mathrm{Bu})_{2} \mathrm{Al}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(827$ $\mu \mathrm{L}, 0.827 \mathrm{mmol}$) was stirred at $-78^{\circ} \mathrm{C}$ for 10 min under an Ar atmosphere. MeOH (0.5 mL) was added and the mixture poured into 1 M aqueous $\mathrm{HCl}(15 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$. The aqueous layer was extracted with CHCl_{3}. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. After sol vent evaporation, the residue ($260 \mathrm{mg}, 0.248 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one ($158 \mathrm{mg}, 0.372 \mathrm{mmol}$) was added. After stirring at $20^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.5 \mathrm{~g})$ were added. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 10 min and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with a saturated aqueous solution of NaHCO_{3}, then with brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent evaporation and flash chromatography on silica gel ($1: 5 \mathrm{EtOAc}$ light petroleum ether) afforded a colorless oil ($231 \mathrm{mg}, 80 \%$). $[\alpha]^{25} \mathrm{D}=38$ ($c=0.5$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27,6.88(2 \mathrm{~d}$, J $=8.7$ Hz, 4H), 5.00, 4.73 (2d, J $=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.95, 4.71 (2d, J = $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.26$ $(\mathrm{m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.71(\mathrm{~m}$, $1 \mathrm{H}), 3.51\left(\mathrm{dd},{ }^{3} \mathrm{~J}=10.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.46(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.45,3.42(2 \mathrm{~s}, 6 \mathrm{H}), 3.26(\mathrm{dd}, \mathrm{J}=9.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{t}, \mathrm{J}=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, \mathrm{J}=17.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, \mathrm{J}=17.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.49,1.43-1.41(\mathrm{~m}, 7 \mathrm{H})$, $1.04(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-0.93$ $(\mathrm{m}, 18 \mathrm{H}), 0.87(\mathrm{~s}, 18 \mathrm{H}), 0.59(\mathrm{q}, \mathrm{J}=7.8 \mathrm{~Hz}, 12 \mathrm{H}), 0.13,0.04$, 0.01 (3s, 12H). ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.4,159.0$, 130.8, 129.1, 113.7, 98.6, 98.2, 97.7, 82.0, 81.9, 78.8, 78.7, 73.1, $72.5,70.3,69.0,56.3,55.2,44.8,42.3,36.8,34.9,30.2,25.9$, 25.7, 21.0, 18.4, 17.8, 13.3, 10.2, 7.0, 5.3, 5.2, -3.9, -4.0, -4.6, -5.3. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{104} \mathrm{O}_{12} \mathrm{Si}_{4}$ (1045.75): C, 60.92; H, 9.96. Found: C, 60.64; H, 9.75.

Methyl [(tert-Butyl)dimethylsilyl 4,8,10,12,13,14-Hexa-deoxy-2,3-0-bis(methoxymethyl)-4,10-dimethyl-15-0-(p-methoxybenzyl)-6-0-[(tert-butyl)dimethylsilyl]- β-D-gulo-L-gluco-pentadecopyranosid]-7-ulo-7,11-pyranoside ((+)36). HF -pyridine (0.23 mL) was added to a stirred solution of (+)-35 ($116 \mathrm{mg}, 0.11 \mathrm{mmol}$) in anhydrous THF (2.4 mL) cool ed to $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , the mixture was poured into a saturated aqueous solution of $\mathrm{NaHCO}_{3}(15$ mL) and then extracted with EtOAc. The solvent was evaporated in vacuo, and the crude oil (7-ulo-7,1-pyranose) was dissolved in $\mathrm{MeOH}(1.5 \mathrm{~mL})$. After the addition of p-toluenesulfonic acid (4 mg), the mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h . $\mathrm{NaHCO}_{3}(15 \mathrm{mg})$ was added. After stirring at $20^{\circ} \mathrm{C}$ for 5 min the precipitate was filtered off. Solvent evaporation and flash chromatography on silica gel (1:6 EtOAc/light petroleum ether) afforded a colorless oil ($71 \mathrm{mg}, 77 \%$). R_{f} (1:4 EtOAc/light petroleum ether $)=0.57 \cdot[\alpha]^{25} \mathrm{D}=9\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33,6.91$ (2d, 4 H), 5.39 (br.d, J $=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25,4.86(2 \mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.24,4.77(2 \mathrm{~d}, \mathrm{~J}=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dd}, \mathrm{J}=9.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.39-3.26 (m, 3H), 3.38 (s, 3H), 3.34, 3.31 (2s, $6 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.57(\mathrm{~m}, 9 \mathrm{H}), 1.31$ $(\mathrm{d}, \mathrm{J})=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.07,1.06(2 \mathrm{~s}, 18 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$, 3H), 0.38, 0.30, 0.17, 0.13 (4s, 12H). ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , CDCl_{3}): $\delta 156.7,132.0,129.8,114.5,99.4,99.35,98.3,96.4$, 83.2, 82.7, 79.4, 77.2, 75.4, 73.2, 72.9, 70.6, 56.5, 55.5, 55.2, $38.5,35.8,32.6,32.6,30.7,23.7,26.6,18.9,18.7,14.4,10.6$, $-2.9,-3.8,-4.4,-4.5$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{78} \mathrm{O}_{12} \mathrm{Si}_{2}$ (831.24): C, 60.69; H, 9.46. Found: C, 60.84; H, 9.31.
(4S,E)-7-Chloro-1-\{methyl 4,8,10,12,13,14-hexadeoxy-2,3-0-bis(methoxymethyl)-4,10-dimethyl-15-0-(p-meth-oxybenzyl)-6-[(tert-butyl)dimethylsilyl]- β-D-gulo-L-gluco-pentadecos-7-ulo- α-7,11-pyranosid-5,1-pyranosid $\}$-2-methylidene-4-[(p-methoxybenzoyl)oxy]octa-5,7-diene ((+)-38). A mixture of (+)-36 ($30 \mathrm{mg}, 0.036 \mathrm{mmol}$), anhydrous THF (1.1 mL), and $1 \mathrm{M} \mathrm{Bu} 4_{4} \mathrm{NF}$ in THF ($39 \mu \mathrm{~L}, 0.039 \mathrm{mmol}$) was stirred at $-30^{\circ} \mathrm{C}$ for 1.5 h . Solvent evaporation, filtration through a pad of silica gel (3:1 EtOAcllight petroleum ether), and solvent evaporation afforded a colorless oil, which was dissol ved at $0{ }^{\circ} \mathrm{C}$ in pyridine (0.4 mL) and $\mathrm{Ac}_{2} \mathrm{O}(0.4 \mathrm{~mL})$. After addition of 4-(dimethylamino)pyridine (3 mg), the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Sol vents were evaporated under high vacuum (10^{-2} Torr). The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 $\mathrm{mL})$. The solution was washed with 1 M aqueous $\mathrm{HCl}(2 \mathrm{~mL})$, then with saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and finally with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. After drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated, affording unstable diacetate 37 as a pale yellow oil ($22 \mathrm{mg}, 75 \%$). The crude diacetate 37 ($20 \mathrm{mg}, 0.025$ mmol) was dissolved in $\mathrm{CD}_{3} \mathrm{NO}_{2}$ (5 mm NMR tube) and cooled to $-10{ }^{\circ} \mathrm{C}$. $\mathbf{1 6}(83 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(31 \mu \mathrm{~L}$,
0.2 mmol) were added, and the reaction was followed by ${ }^{1} \mathrm{H}$ NMR at $-10^{\circ} \mathrm{C}$. After 3 h at $-10^{\circ} \mathrm{C}$ the mixture was poured into a saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with EtOAc (8 mL , four times). The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. After solvent evaporation in vacuo the residue was dissolved in anhydrous THF (1.5 mL), and DBU ($60 \mu \mathrm{~L}$) was added. After stirring at $50^{\circ} \mathrm{C}$ for 30 min , the mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ $(5 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed successively with 1 M aqueous HCl , a saturated aqueous solution of NaHCO_{3} and brine and then dried (MgSO_{4}). Solvent evaporation and flash chromatography on silica gel (1:8 to 1:4 EtOAc/light petroleum ether) afforded a colorless oil ($11 \mathrm{mg}, 42 \%$) containing a $4: 1$ mixture of β / α C-glycosides. A second flash chromatography on silica gel afforded pure (+)-38 (8 mg, 30\%). R_{f} (1:16 EtOAc/light petroleum ether $)=0.13 .[\alpha]^{25}{ }_{D}=65\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02,6.93(2 \mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.26 , 6.88 (2d, J $=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.38$ (dd, J $=15.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ $(d d, J=15.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38,5.31(2 \mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=6.8$ Hz, 1H), 4.79-4.77 (m, 1H), 4.76, 4.64 (2br s, 2H), 4.73-4.67 $(\mathrm{m}, 3 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.93-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.87,3.81(2 \mathrm{~s}, 6 \mathrm{H})$, 3.80 (br s, 1H), $3.70(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dm}, \mathrm{J}=10.0$, $1 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.45,3.33(2 \mathrm{~s}, 6 \mathrm{H}), 3.38(\mathrm{dd}, \mathrm{J}=$ $9.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, \mathrm{J}=10.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H})$, $2.52(\mathrm{dd}, \mathrm{J}=14.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=14.3,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $1.56,1.45-1.28(2 \mathrm{~m}, 9 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}$, $9 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.10,0.07(2 \mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta 170.4,165.4,163.4,159.1,142.2,137.7$, 133.0, 131.7, 130.7, 129.2, 128.5, 122.7, 116.5, 113.7, 113.6, 110.9, 100.8, 98.4, 97.1, 83.6, 79.6, 79.1, 78.3, 72.7, 72.6, 71.8, $70.4,69.9,67.6,56.4,55.7,55.4,55.3,47.0,43.4,37.4,36.7$, 34.5, 32.2, 29.9, 25.9, 22.8, 20.9, 18.4, 13.7, 10.2, -3.1, -4.4. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{85} \mathrm{O}_{15} \mathrm{SiCl}$ (1049.80): C, 62.93; $\mathrm{H}, 8.16$. Found: C, 62.72; H, 8.05.

Acknowledgment. We thank the Swiss National Science F oundation and the F onds Herbette (Lausanne) for financial support. We are also grateful to Mr. Frédéric Carrel for preliminary experiments toward the synthesis of $\mathbf{1 4}$ and Mr. Martial Rey, Francisco Sepulveda, and Miss Cécile Glanzmann for their technical help.

Supporting Information Available: Data for (-)-6, (-)6A, (-)-6M(S), (+)-6M(R), (+)-7, (+)-8, 12-14, 16, (+)-17, 19, 20, (+)-22, (+)-23, (+)-26, (-)-28, (-)-29, (+)-30, (-)-31, (+)32, (+)-33, (+)-35, (+)-36, (+)-38. This material is available free of charge via the Internet at http://pubs.acs.org.
J O991642B

[^0]: (1) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. I.; Boyd, M. R.; Schmidt, J. M.; Hooper, J. N. A. J. Org. Chem. 1993, 58, 1302-1304 Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. I.; Boyd, M. R.J . Chem Soc., Chem. Commun. 1993, 1166-1168. Pettit, G. R.; Herald, C. I.; Cichacz, Z. A.; Gao, F.; Schmidt, J. M.; Boyd, M. R.; Christie, N. D.; Boettner, F. E. J. Chem. Soc., Chem. Commun. 1993, 1805-1807 Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. I.; Boyd, M. R.; Schmidt, J. M.; Hamel, E.; Bai, R. J. Chem. Soc., Chem. Commun. 1994, 16051606. Pettit, G. R. Pure Appl. Chem. 1994, 2271-2281.
 (2) Bai, R.; Cichacz, Z. A.; Herald, C. I.; Pettit, G. R.; Hamel, E Mol. Pharmacol. 1993, 44, 757-766. Bai, R.; Taylor, G. F.; Schmidt, J. M.; Williams, M. D.; Kepler, J. A.; Pettit, G. R.; Hamel, E. Mol. Pharmacol. 1995, 47, 965-976. Bai, R.; Taylor, G. F.; Cichacz, Z. A.; Herald, C. I.; Kepler, J . A.; Pettit, G. R.; Hamel, E. Biochemistry 1995, 34, 9714-9721.
 (3) K obayashi, M.; Aoki, S.; Sakai, H.; Kihara, N.; Saski, T.; Kitagawa, I. Chem. Pharm. Bull. 1993, 41, 989-991. K obayashi, M. Aoki, S.; Kitagawa, I. Tetrahedron Lett. 1994, 35, 1243-1246. K obayashi, M.; Aoki, S.; Gato, K.; Kitagawa, I. Chem. Pharm. Bull. 1996, 44, 2142-2149.
 (4) Pietruszka, J. Angew. Chem., Int. Ed. 1998, 37, 2629-2636.
 (5) (a) Guo, J.; Duffy, K. J.; Stevens, K. L.; Dalko, P. I.; Roth, R. M.; Hayward, M. M.; Kishi, Y. Angew. Chem., Int. Ed. 1998, 37, 187-192. (b) Hayward, M. M.; Roth, R. M.; Duffy, K. J .; Dalko, P. I.; Stevens, K L.; Guo, J.; Kishi, Y. Angew. Chem., Int. Ed. 1998, 37, 192-196.
 (6) Evans, D. A.; Coleman, P. J.; Dias, L. C. Angew. Chem., Int. Ed Engl. 1997, 36, 2738-2741. Evans, D. A.; Trotter, B. W.; Côté, B.; Coleman, P. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 2741-2744 Evans, D. A.; Trotter, B. W.; Côté, B.; Coleman, P. J .; Dias, L. C.; Tyler, A. N. Angew. Chem., Int. Ed. Engl. 1997, 36, 2744-2747.
 (7) Evans, D. A.; Trotter, B. W.; Coleman, P. J.; Côté, B.; Dias, L C.; Rajapakse, H. A.; Tyler, A. N. Tetrahedron 1999, 55, 8671-8726.

[^1]: (11) (a) Keck, G. E.; Geraci, L. S. Tetrahedron Lett. 1993, 34, 78277828. (b) Bedeschi, P.; Casdari, S.; Costa, A. L.; Tagliavini, E.; UmariRonchi, A. Tetrahedron Lett. 1995, 36, 7897-7900. (c) Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Y amamoto, H. J . Am. Chem. Soc. 1996, 118, 4723-4724. (d) Casdari, S.; Cozzi, P. G.; Oriali, P.; Tagliavini, E.; Umani-Ronchi, A. J . Chem. Soc., Chem. Commun. 1997, 2123-2124.
 (12) (a) Cage, J. R.; Evans, D. A. Org. Synth. 1989, 339-343. (b) Evans, D. A.; Rieger, D. L.; J ones, T. K.; Kaldor, S. W. J . Org. Chem. 1990, 55, 6260-6268.
 (13) (a) M uskat, B. J. Am. Chem. Soc. 1930, 52, 816. (b) Shavanov, S. S.; Tolstikov, G. A.; Miniakhmetov, I. A.; Lomakina, S. I.; Khalilov, L. M. J. Org. Chem. USSR (Engl. Transl.) 1990, 26, 837-840. (c) Bellasia, F.; Ghelfi, F.; Pagnoni, U. M.; Pinetti, A. Gazz. Chim. Ital. 1991, 121, 559-561.
 (14) Dess, D. B.; Martin, J . C. J . Org. Chem. 1983, 48, 4155-4156. Ireland, R. E.; Lin, L. J . Org. Chem. 1993, 58, 2899.

[^2]: (15) Dale, J. A.; Dull, D. L.; M osher, H. S. J. Org. Chem. 1969, 34 2543-2549.
 (16) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J . Am. Chem. Soc. 1993, 115, 8467-8468.

[^3]: (17) Henrot, S.; Larchevêque, M.; Petit, Y. J. Chem. Soc., Chem. Commun. 1986, 183-190.
 (18) (a) Waelchili, P. C.; Eugster, C. H. Helv. Chim. Acta 1978, 61, 885-898. (b) Ashton, M. J.; Hills, S. J.; Newton, O. G.; Taylor, J. B.; Tondu, S. C. D. Heterocycles 1989, 28, 1015-1035.
 (19) Inoue, T.; Mukaiyama, T. Bull. Chem. Soc. J pn. 1989, 53, 174178.
 (20) (a) Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc. 1988, 110, 2506-2526. (b) Evans, D. A.; Rieger, D. L.; J ones, T. K.; Kaldor, S. W. J . Org. Chem. 1990, 55, 6260-6268. (c) Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497-4513. (d) Keck, G. E.; Park, M.; Krishnamurthy, D. J. Org. Chem. 1993, 58, 3787-3788. (e) Clark, D. L.; Heathcock, C. H. J . Org. Chem. 1993, 58, 5878-5879. (f) Robichaud, A. J .; Berger, G. D.; Evans, D. A. Tetrahedron Lett. 1993, 34, 8403-8406. (g) Golec, J. M. C.; Gillepsie, R. J. Tetrahedron Lett. 1993, 34, 8167-8168. (h) Paterson, I.; Hulme, A. N. J. Org. Chem. 1995, 60, 3288-3300. (i) Dahmann, G.; H offmann, R. W. Liebigs Ann. 1994, 837-846. (j) Canc, D. E.; Luo, G. J. Am. Chem. Soc. 1995, 117, 6633-6634. (k) Carreira, E. M.; Bois, J. D. J. Am. Chem. Soc. 1995, 117, 8106-8125. (I) Smith, A. B.; Qiu, Y.; J ones, D. R.; K obayashi, K. J. Am. Chem. Soc. 1995, 117, 12011-12012. (m) Evans, D. A.; Fitch, D. M. J. Org. Chem. 1997, 62, 454-455. (n) Mapp, A. K.; Heathcock, C. H. J. Org. Chem. 1999, 64, 23-27.
 (21) Dale, T. A.; M osher, H. S. J. Am. Chem. Soc. 1973, 95, 512519.

[^4]: (22) Narasaka, K.; Pai, F. G. Tetrahedron 1984, 40, 2233-2238. Chen, K. M.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J . Tetrahedron Lett. 1987, 28, 155-158.
 (23) Grisenti, P.; Ferraboschi, P.; Manzocchi, A.; Santaniello, E. Tetrahedron 1992, 48, 3827-3834.
 (24) White, J. D.; Reddy, N. G.; Spessard, G. O. J . Am. Chem. Soc. 1988, 110, 1624-1626.
 (25) K awabata, T.; Kimura, Y.; Ito, Y.; Terashima, S.; Sasaki, A.; Sunagawa, M. Tetrahedron 1988, 44, 2149-2166.
 (26) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480-2482. Tidwell, T. T. Org. React. 1990, 39, 287.
 (27) Rathke, M. W.; Nowak, M. J . Org. Chem. 1985, 50, 2624-2626.

[^5]: (28) Sharpless, K. B.; Amberg, W.; Bennani, Y. I.; Crispino, G. A.; Hartung, J.; J eong, K.;'Kwong, H.; Morikawa, K.; Wang, Z.; Xu, D.; Zhang, X. J. Org. Chem. 1992, 57, 2768-2771. Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2488 -2547.
 (29) Using an AD mixture prepared with other chiral ligands such as (DHQ) $)_{2}$ PHAL or (DHQD) $)_{2}$ PYR resulted in a loss of selectivity.
 (30) Park, C. Y.; Kim, B. M.; Sharpless, K. M. Tetrahedron Lett. 1991, 32, 1003-1006.

[^6]: (36) Kraehenbuehl, K.; Picasso, S.; Vogel, P. Helv. Chim. Acta 1998, 81, 1439-1479.

